基于数据模型双驱动的新能源微电网分布鲁棒优化调度

郭方洪, 冯秀荣, 杨淏, 唐雅洁, 王雷

郭方洪, 冯秀荣, 杨淏, 唐雅洁, 王雷. 基于数据模型双驱动的新能源微电网分布鲁棒优化调度[J]. 电力系统自动化, 2024, 48(20): 36-47.
引用本文: 郭方洪, 冯秀荣, 杨淏, 唐雅洁, 王雷. 基于数据模型双驱动的新能源微电网分布鲁棒优化调度[J]. 电力系统自动化, 2024, 48(20): 36-47.
GUO Fanghong, FENG Xiurong, YANG Hao, TANG Yajie, WANG Lei. Dual-data-model-driven Distributionally Robust Optimal Scheduling of Renewable Energy Microgrid[J]. Automation of Electric Power Systems, 2024, 48(20): 36-47.
Citation: GUO Fanghong, FENG Xiurong, YANG Hao, TANG Yajie, WANG Lei. Dual-data-model-driven Distributionally Robust Optimal Scheduling of Renewable Energy Microgrid[J]. Automation of Electric Power Systems, 2024, 48(20): 36-47.

基于数据模型双驱动的新能源微电网分布鲁棒优化调度

基金项目: 

国家自然科学基金资助项目(62373328)

浙江省自然科学基金资助项目(LZ23F030008)~~

详细信息
    作者简介:

    郭方洪(1987—),男,博士,副教授,博士生导师,主要研究方向:微电网控制与优化。E-mail:fhguo@zjut.edu.cn冯秀荣(1999—),女,硕士研究生,主要研究方向:电力系统优化运行。E-mail:211122030050@zjut.edu.cn杨淏(1999—),男,硕士研究生,主要研究方向:微电网控制与优化。E-mail:haoyang@zjut.edu.cn

  • 中图分类号: TM73

Dual-data-model-driven Distributionally Robust Optimal Scheduling of Renewable Energy Microgrid

Funds: 

supported by National Natural Science Foundation of China (No. 62373328)

Zhejiang Provincial Natural Science Foundation of China (No. LZ23F030008)

  • 摘要: 针对新建新能源微电网数据稀缺性和源荷不确定性的能量优化调度问题,文中提出了一种基于数据模型双驱动的微电网分布鲁棒优化调度框架。首先,通过神经网络与光伏发电物理模型相结合,利用历史气象数据增强场景生成的准确性和鲁棒性,以应对数据稀缺带来的问题。其次,通过引入基于Wasserstein距离的分布鲁棒优化策略和线性决策规则,将考虑源荷不确定性的微电网能量优化调度问题由复杂的半无限规划问题转化为易于求解的混合整数线性规划问题。所提出的分布鲁棒优化能源调度框架能够在低运营成本和高可靠性之间实现平衡,并适应光伏发电功率和其他因素的实时变化。最后,在3种典型气象条件下的实验对比结果验证了所提方法的有效性。
    Abstract: Aiming at energy optimal scheduling problems in newly established microgrids(MGs) with the data scarcity and the uncertainty of source and load, this paper proposes a dual-data-model-driven distributionally robust optimization(DRO) framework for MGs. Firstly, the accuracy and robustness of the scenario generation using historical meteorological data are enhanced by the integration of neural networks with photovoltaic physical generation models to address the problem of data scarcity. Secondly, by the introduction of the DRO strategy and linear decision rules based on the Wasserstein distance, the energy optimization scheduling problem of MGs considering the uncertainty of source and load is transformed from a complex semi-infinite programming(SIP) problem to a mixed-integer linear programming(MILP) problem that is easy to be solved. The proposed DRObased energy scheduling framework can realize the balance between low operation costs and high reliability, and can adapt to the real-time changes in photovoltaic generation power and other factors. Finally, the experimental comparison results under three typical weather conditions verify the effectiveness of the proposed method.
  • [1] 国家能源局.能源转型步伐加快,我国风电太阳能发电装机超11亿千瓦[EB/OL].(2024-04-26)[2024-05-14]. https://www.nea.gov.cn/2024-04/26/c_1310772757.htm.

    National Energy Administration. The pace of energy transformation accelerated, and China’s installed wind and solar power generation exceeded 1.1 billion kilowatts[EB/OL].(2024-04-26)[2024-05-14]. https://www. nea. gov. cn/2024-04/26/c_1310772757.htm.

    [2] 林舜江,冯祥勇,梁炜焜,等.新能源电力系统不确定优化调度方法研究现状及展望[J].电力系统自动化,2024,48(10):20-41.

    LIN Shunjiang, FENG Xiangyong, LIANG Weikun, et al.Research status and prospect of uncertain optimal dispatch methods for renewable energy power systems[J]. Automation of Electric Power Systems, 2024, 48(10):20-41.

    [3]

    MU C X, SHI Y K, XU N, et al. Multi-objective interval optimization dispatch of microgrid via deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2024, 15(3):2957-2970.

    [4] 陈池瑶,苗世洪,姚福星,等.基于多智能体算法的多微电网-配电网分层协同调度策略[J].电力系统自动化,2023,47(10):57-65.

    CHEN Chiyao, MIAO Shihong, YAO Fuxing, et al.Hierarchical cooperative dispatching strategy of multi-microgrid and distribution networks based on multi-agent algorithm[J].Automation of Electric Power Systems, 2023, 47(10):57-65.

    [5] 鲁卓欣,徐潇源,严正,等.不确定性环境下数据驱动的电力系统优化调度方法综述[J].电力系统自动化,2020,44(21):172-183.

    LU Zhuoxin, XU Xiaoyuan, YAN Zheng, et al. Overview on data-driven optimal scheduling methods of power system in uncertain environment[J]. Automation of Electric Power Systems, 2020, 44(21):172-183.

    [6]

    TANG Y G, YANG K, ZHANG S J, et al. Photovoltaic power forecasting:a dual-attention gated recurrent unit framework incorporating weather clustering and transfer learning strategy[J]. Engineering Applications of Artificial Intelligence,2024, 130:107691.

    [7]

    ZHANG X S, DING T, MU C G, et al. Dual stochastic dual dynamic programming for multi-stage economic dispatch with renewable energy and thermal energy storage[J]. IEEE Transactions on Power Systems, 2024, 39(2):3725-3737.

    [8]

    CAO Y, MU Y F, JIA H J, et al. A multi-objective stochastic optimization approach for planning a multi-energy microgrid considering unscheduled islanded operation[J]. IEEE Transactions on Sustainable Energy, 2024, 15(2):1300-1314.

    [9] 魏梅芳,吴燕,黎跃龙,等.基于分布鲁棒优化的微电网日前经济运行模型与求解方法[J].电力系统及其自动化学报,2022,34(12):81-90.

    WEI Meifang, WU Yan, LI Yuelong, et al. Day-ahead economic operation model of microgrid and its solving method based on distributed robust optimization[J]. Proceedings of the CSU-EPSA, 2022, 34(12):81-90.

    [10]

    QIU H F, LIU P X, GU W, et al. Incorporating data-driven demand-price uncertainty correlations into microgrid optimal dispatch[J]. IEEE Transactions on Smart Grid, 2024, 15(3):2804-2818.

    [11]

    ZHONG J J, LI Y, CAO Y J, et al. Robust coordinated optimization with adaptive uncertainty set for a multi-energy microgrid[J]. IEEE Transactions on Sustainable Energy,2023, 14(1):111-124.

    [12] 赵毅,王维庆,闫斯哲.考虑阶梯型碳交易的风光储联合系统分布鲁棒优化调度[J].电力系统保护与控制,2023,51(6):127-136.

    ZHAO Yi, WANG Weiqing, YAN Sizhe. Distributionally robust optimization scheduling of a joint wind-solar-storage system considering step-type carbon trading[J]. Power System Protection and Control, 2023, 51(6):127-136.

    [13] 吴孟雪,房方.计及风光不确定性的电-热-氢综合能源系统分布鲁棒优化[J].电工技术学报,2023,38(13):3473-3485.

    WU Mengxue, FANG Fang. Distributionally robust optimization of electricity-heat-hydrogen integrated energy system with wind and solar uncertainties[J]. Transactions of China Electrotechnical Society, 2023, 38(13):3473-3485.

    [14] 曹金声,曾君,刘俊峰,等.考虑极限场景的并网型微电网分布鲁棒优化方法[J].电力系统自动化,2022,46(7):50-59.

    CAO Jinsheng, ZENG Jun, LIU Junfeng, et al.Distributionally robust optimization method for grid-connected microgrid considering extreme scenarios[J]. Automation of Electric Power Systems, 2022, 46(7):50-59.

    [15]

    LIU S, GUO F H, WU X, et al. A distributed secure and robust power management framework for more electric aircraft[J/OL]. IEEE Transactions on Transportation Electrification[2024-05-10]. https://ieeexplore.ieee.org/document/10433713.

    [16]

    MOHAJERIN ESFAHANI P, KUHN D. Data-driven distributionally robust optimization using the Wasserstein metric:performance guarantees and tractable reformulations[J].Mathematical Programming, 2018, 171(1):115-166.

    [17]

    YANG L F, YANG Y, CHEN G, et al. Distributionally robust framework and its approximations based on vector and region split for self-scheduling of generation companies[J].IEEE Transactions on Industrial Informatics, 2022, 18(8):5231-5241.

    [18] 李运鸿,徐潇源,严正.基于生成对抗网络的独立微电网光-储容量分布鲁棒优化配置[J].电力系统自动化,2023,47(7):51-62.

    LI Yunhong, XU Xiaoyuan, YAN Zheng. Distributionally robust optimal allocation for capacity distribution of photovoltaic and energy storage units in standalone microgrid based on generative adversarial network[J]. Automation of Electric Power Systems, 2023, 47(7):51-62.

    [19] 朱佳男,艾芊,李嘉媚.基于分布鲁棒优化的广义共享储能容量配置方法[J].电力系统自动化,2024,48(8):185-194.

    ZHU Jianan, AI Qian, LI Jiamei. Capacity allocation method for generalized shared energy storage based on distributionally robust optimization[J]. Automation of Electric Power Systems,2024, 48(8):185-194.

    [20] 李鸿,朱继忠,董瀚江.考虑协变量因素的多能微电网两阶段分布鲁棒优化调度[J/OL].中国电机工程学报[2024-05-10].http://kns. cnki. net/kcms/detail/11.2107. TM. 20240507.2003.012.html.LI Hong, ZHU Jizhong, DONG Hanjiang. Two-stage distributionally robust optimization scheduling for multi-energy microgrid considering covariate factors[J/OL]. Proceedings of the CSEE[2024-05-10]. http://kns. cnki. net/kcms/detail/11.2107.TM.20240507.2003.012.html.
    [21]

    LI L Y, NING C, QIU H F, et al. Online data-stream-driven distributionally robust optimal energy management for hydrogenbased multimicrogrids[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3):4370-4384.

    [22]

    ZHOU A P, YANG M, WU T, et al. Distributionally robust energy management for islanded microgrids with variable moment information:an MISOCP approach[J]. IEEE Transactions on Smart Grid, 2023, 14(5):3668-3680.

    [23]

    SHEN F F, ZHENG X D, LYU M C, et al. Transactive energy-based sequential load restoration of distribution systems with networked microgrids under uncertainty[J]. IEEE Transactions on Smart Grid, 2024, 15(3):2601-2613.

    [24]

    WANG Y B, DONG W, YANG Q. Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets[J]. Applied Energy, 2022, 310:118528.

    [25]

    MAYER M J, GRÓF G. Extensive comparison of physical models for photovoltaic power forecasting[J]. Applied Energy,2021, 283:116239.

    [26]

    LEI Y, WANG D, JIA H J, et al. Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy[J]. Applied Energy,2020, 276:115395.

    [27] 陈艳波,田昊欣,刘宇翔,等.计及电动汽车需求响应的高速公路服务区光储充鲁棒优化配置[J/OL].中国电机工程学报[2024-06-05]. https://doi. org/10.13334/j. 0258-8013. pcsee.231850.CHEN Yanbo, TIAN Haoxin, LIU Yuxiang, et al. Robust optimization configuration of photovoltaic-energy storagecharging integrated system in expressway service area considering demand response of electric vehicles[J/OL].Proceedings of the CSEE[2024-06-05]. https://doi. org/10.13334/j.0258-8013.pcsee.231850.
    [28] 高海淑,张玉敏,吉兴全,等.基于场景聚类的主动配电网分布鲁棒综合优化[J].电力系统自动化,2020,44(21):32-41.

    GAO Haishu, ZHANG Yumin, JI Xingquan, et al. Scenario clustering based distributionally robust comprehensive optimization of active distribution network[J]. Automation of Electric Power Systems, 2020, 44(21):32-41.

    [29] 贾晓强,杨永标,杜姣,等.气候变化条件下基于智能预测模型的虚拟电厂不确定性运行优化研究[J].发电技术,2023,44(6):790-799.

    JIA Xiaoqiang, YANG Yongbiao, DU Jiao, et al. Study on uncertainty operation optimization of virtual power plant based on intelligent prediction model under climate change[J]. Power Generation Technology, 2023, 44(6):790-799.

    [30]

    DU Y P, FELL C J, DUCK B, et al. Evaluation of photovoltaic panel temperature in realistic scenarios[J]. Energy Conversion and Management, 2016, 108:60-67.

    [31]

    LIU S H, SIMBURGER E J, MATSUMOTO J, et al.Evaluation of thin-film solar cell temperature coefficients for space applications[J]. Progress in Photovoltaics:Research and Applications, 2005, 13(2):149-156.

    [32] 刘一欣,郭力,王成山.微电网两阶段鲁棒优化经济调度方法[J].中国电机工程学报,2018,38(14):4013-4022.

    LIU Yixin, GUO Li, WANG Chengshan. Economic dispatch of microgrid based on two stage robust optimization[J].Proceedings of the CSEE, 2018, 38(14):4013-4022.

    [33]

    ZHONG J J, CAO Y J, LI Y, et al. Distributed modeling considering uncertainties for robust operation of integrated energy system[J]. Energy, 2021, 224:120179.

    [34] 毕锐,王孝淦,袁华凯,等.考虑供需双侧响应和碳交易的氢能综合能源系统鲁棒调度[J].电力系统保护与控制,2023,51(12):122-132.

    BI Rui, WANG Xiaogan, YUAN Huakai, et al. Robust dispatch of a hydrogen integrated energy system considering double side response and carbon trading mechanism[J]. Power System Protection and Control, 2023, 51(12):122-132.

    [35] 李长云,徐敏灵,蔡淑媛.计及电动汽车违约不确定性的微电网两段式优化调度策略[J].电工技术学报,2023,38(7):1838-1851.

    LI Changyun, XU Minling, CAI Shuyuan. Two-stage optimal scheduling strategy for micro-grid considering EV default uncertainty[J]. Transactions of China Electrotechnical Society,2023, 38(7):1838-1851.

    [36]

    ZHU R J, WEI H, BAI X Q. Wasserstein metric based distributionally robust approximate framework for unit commitment[J]. IEEE Transactions on Power Systems, 2019,34(4):2991-3001.

    [37]

    GAVANIDOUS E S, BAKIRTZIS A G. Design of a stand alone system with renewable energy sources using trade off methods[J]. IEEE Transactions on Energy Conversion, 1992,7(1):42-48.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13

目录

    /

    返回文章
    返回