余晓丹, 董晓红, 贾宏杰, 王成山. 基于朗伯函数的时滞电力系统ODB与OEB判别方法[J]. 电力系统自动化, 2014, 38(6): 33-37,111.
引用本文: 余晓丹, 董晓红, 贾宏杰, 王成山. 基于朗伯函数的时滞电力系统ODB与OEB判别方法[J]. 电力系统自动化, 2014, 38(6): 33-37,111.
YU Xiaodan, DONG Xiaohong, JIA Hongjie, WANG Chengshan. Discriminating Method for OEB and ODB in Time-delayed Power Systems Based on Lambert W Function[J]. Automation of Electric Power Systems, 2014, 38(6): 33-37,111.
Citation: YU Xiaodan, DONG Xiaohong, JIA Hongjie, WANG Chengshan. Discriminating Method for OEB and ODB in Time-delayed Power Systems Based on Lambert W Function[J]. Automation of Electric Power Systems, 2014, 38(6): 33-37,111.

基于朗伯函数的时滞电力系统ODB与OEB判别方法

Discriminating Method for OEB and ODB in Time-delayed Power Systems Based on Lambert W Function

  • 摘要: 针对在以往研究中发现的时滞电力系统振荡泯灭分岔(ODB)和振荡诞生分岔(OEB),首先给出了它们的确切定义;进一步,利用朗伯(Lambert W)函数对系统的特征方程进行变换,再根据朗伯函数随参数变化时其实数解出现和消失过程,给出了一种判别时滞系统ODB和OEB的有效方法;进一步,利用简单时滞系统和WSCC-3机9节点时滞电力系统,对所述方法进行了验证。由于OEB和ODB与时滞系统振荡模式的突变密切相关,因此该研究对揭示时滞电力系统的振荡模式变化和失稳机理具有一定帮助。

     

    Abstract: Two new bifurcations in time-delayed power systems,the oscillation disappearance bifurcation(ODB)and oscillation emergence bifurcation(OEB)found in a previous study,are explored and discussed.Their definitions are given first according to the transform of the system eigenvalues.Further,an approach to determining the occurrence of ODB and OEB in timedelayed dynamic systems is proposed.It uses the information on the disappearance and emergence of the real solution branches of the Lambert W function.A typical one-dimensional time-delayed system and WSCC 3-machine-9-bus system with time delay are then selected to show the mechanism of two bifurcations and to validate the given approach.Since OEB and ODB are closely related to the emergence and disappearance of the system oscillation modes,the study under discussion is helpful to power system stability analysis with time delays.

     

/

返回文章
返回