李知艺, 许悦, 韩旭涛. 量子计算技术在新型电力系统决策优化中的应用[J]. 电力系统自动化, 2024, 48(6): 62-73.
引用本文: 李知艺, 许悦, 韩旭涛. 量子计算技术在新型电力系统决策优化中的应用[J]. 电力系统自动化, 2024, 48(6): 62-73.
LI Zhi-yi, XU Yue, HAN Xu-tao. Application of Quantum Computing Technology in Decision-making Optimization of New Power System[J]. Automation of Electric Power Systems, 2024, 48(6): 62-73.
Citation: LI Zhi-yi, XU Yue, HAN Xu-tao. Application of Quantum Computing Technology in Decision-making Optimization of New Power System[J]. Automation of Electric Power Systems, 2024, 48(6): 62-73.

量子计算技术在新型电力系统决策优化中的应用

Application of Quantum Computing Technology in Decision-making Optimization of New Power System

  • 摘要: 新型电力系统的规划、运行和市场运营等决策优化过程呈现变量激增、约束繁杂等特点,而量子计算具有运算并行和状态叠加等特性,为高效解决此类“维数灾难”难题提供了新的技术路径。文中围绕量子计算技术赋能新型电力系统决策优化的原理可行性及实现思路展开探析。首先,梳理分析量子计算应用于新型电力系统决策优化过程的先进性与局限性,构建量子-经典计算混合的变分量子决策优化框架。在此基础上,提炼新型电力系统典型优化问题的共性,推导统一的问题结构,形成可利用量子比特系统描述的能量模型。随后,提出基于量子近似优化算法的求解流程,寻找能量模型的极值,并映射得到原优化问题的最优解。最后,从软硬件、算法框架以及行业发展等角度提出思考与展望。

     

    Abstract: The decision-making optimization process of planning, operation, and market operation of new power system presents more variables and more complex constraints. The quantum computing has the characteristics of parallel computation operation and state superposition, which can provide effective ideas for avoiding the “curse of dimensionality”. This paper attempts to explore the theoretic feasibility and application prospect of quantum computing technology for the decision-making optimization of the new power system. First, both advantages and limitations about the application of quantum computing to the decision-making optimization of the new power system is analyzed. A hybrid quantum-classical computing framework for variational quantum decision optimization is constructed. On this basis, the common features of the typical optimization problems in the new power system are generalized to form a unified problem structure, whereafter it is transformed into the energy model that can be described by the qubit system. Subsequently, the quantum approximation optimization algorithm is adopted to find the extreme value of the energy model, and the optimal solution of the original problem is determined. Finally, reflection and prospect are put forward from the perspective of hardware, software, algorithmic framework, and industry development.

     

/

返回文章
返回