虚拟同步直驱风机低频振荡机理分析及阻尼补偿控制

王子骏, 庄可好, 辛焕海, 李少林, 齐琛, 程雪坤

王子骏, 庄可好, 辛焕海, 李少林, 齐琛, 程雪坤. 虚拟同步直驱风机低频振荡机理分析及阻尼补偿控制[J]. 电力系统自动化, 2024, 48(2): 95-104.
引用本文: 王子骏, 庄可好, 辛焕海, 李少林, 齐琛, 程雪坤. 虚拟同步直驱风机低频振荡机理分析及阻尼补偿控制[J]. 电力系统自动化, 2024, 48(2): 95-104.
WANG Zijun, ZHUANG Kehao, XIN Huanhai, LI Shaolin, QI Chen, CHENG Xuekun. Low-frequency Oscillation Mechanism Analysis and Damping Compensation Control of Virtual Synchronous Direct-driven Wind Turbine Generators[J]. Automation of Electric Power Systems, 2024, 48(2): 95-104.
Citation: WANG Zijun, ZHUANG Kehao, XIN Huanhai, LI Shaolin, QI Chen, CHENG Xuekun. Low-frequency Oscillation Mechanism Analysis and Damping Compensation Control of Virtual Synchronous Direct-driven Wind Turbine Generators[J]. Automation of Electric Power Systems, 2024, 48(2): 95-104.

虚拟同步直驱风机低频振荡机理分析及阻尼补偿控制

基金项目: 

国家电网有限公司总部科技项目(电压源型风电机组关键技术及示范,4000-202114068A-0-0-00)~~

详细信息
    作者简介:

    王子骏(1999—),男,硕士研究生,主要研究方向:高比例新能源电力系统稳定性分析和控制。E-mail:wangzj16@zju.edu.cn庄可好(1998—),男,博士研究生,主要研究方向:高比例新能源电力系统稳定性分析和控制。E-mail:zhuangkh@zju.edu.cn

  • 中图分类号: TM712;TM341

Low-frequency Oscillation Mechanism Analysis and Damping Compensation Control of Virtual Synchronous Direct-driven Wind Turbine Generators

Funds: 

supported by State Grid Corporation of China (No.4000-202114068A-0-0-00)

  • 摘要: 虚拟同步机技术可有效提升电网的电压支撑能力,但也引入了复杂的低频振荡问题。目前,对传统虚拟同步机的低频振荡研究大多忽略直流侧及机侧动态,难以准确刻画虚拟同步直驱风机的低频振荡特性。为解决上述问题,首先,建立了计及机侧动态和直流电压动态的统一阻尼转矩模型,利用阻尼转矩法揭示了机侧转子动态产生的负阻尼转矩是导致风机低频振荡的主要原因,并分析了各环节对风机低频振荡特性的影响规律。进一步,提出了阻尼补偿控制以削弱机侧动态的负阻尼效应,有效提升了机侧耦合下风机并网系统的稳定性。最后,简要分析了所提控制在多机系统的适用性,并基于MATLAB/Simulink仿真验证了理论分析的准确性和所提控制的有效性。
    Abstract: Virtual synchronous generator(VSG) technology can effectively improve the voltage support ability of the power grid.However,it also introduces complex low-frequency oscillation(LFO) problems.At present,most of the LFO studies on traditional VSG ignore the DC-side and generator-side dynamics,which makes it difficult to accurately characterize the LFO characteristics of virtual synchronous direct-driven wind turbine generators.To deal with the above problems,a unified damping torque model considering both the generator-side dynamics and the DC voltage dynamics is established.By using the damping torque method,it is revealed that the negative damping torque produced by the rotor dynamics on the generator side is the main reason of the LFO for wind turbines.Then,the influence law of each link on the LFO characteristics of the wind turbine is analyzed.Furthermore,a damping compensation control is proposed to reduce the negative damping effect of the machine-side dynamics and effectively improve the stability of wind turbine generator grid-connected system under machine-side coupling.Finally,the applicability of the proposed control in multi-computer systems is briefly analyzed,and the cases studies based on the MATLAB/Simulink simulation are conducted to verify the accuracy of the theoretical analysis and the effectiveness of the proposed control.
  • [1] 黎晓,李剑泽,苏晨博,等.锁相环失步对同步发电机暂态功角稳定性的影响机理分析[J].电力系统自动化,2022,46(22):101-110.

    LI Xiao, LI Jianze, SU Chenbo, et al. Influence mechanism analysis of phase locked loop out-of-synchronization on transient power angle stability of synchronous generators[J]. Automation of Electric Power Systems, 2022, 46(22):101-110.

    [2] 马秀达,卢宇,田杰,等.柔性直流输电系统的构网型控制关键技术与挑战[J].电力系统自动化,2023,47(3):1-11.

    MA Xiuda, LU Yu, TIAN Jie, et al. Key technologies and challenges of grid-forming control for flexible DC transmission system[J]. Automation of Electric Power Systems, 2023, 47(3):1-11.

    [3] 刘浩芳,朱艺颖,刘琳,等.新能源机组的电网强度适应性及暂态响应特性测试方案[J].电力系统自动化,2022,46(21):179-185.

    LIU Haofang, ZHU Yiying, LIU Lin, et al. Test scheme for power grid strength adaptability and transient response characteristics of renewable energy unit[J]. Automation of Electric Power Systems, 2022, 46(21):179-185.

    [4]

    FU R Q, WANG X R, ZHANG Y, et al. Inertial and primary frequency response of PLL synchronized VSC interfaced energy resources[J]. IEEE Transactions on Power Systems, 2022,37:2998-3013.

    [5]

    DUCKWITZ D, FISCHER B. Modeling and design of df/dtbased inertia control for power converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5:1553-1564.

    [6] 罗魁,郭剑波,王伟胜,等.跟网型新能源附加频率控制对频率稳定及小扰动同步稳定影响分析综述[J].中国电机工程学报,2023,43(4):1262-1281.

    LUO Kui, GUO Jianbo, WANG Weisheng, et al. Review of impact of grid following variable renewable energy supplementary frequency control on frequency stability and small-disturbance synchronization stability[J]. Proceedings of the CSEE, 2023, 43(4):1262-1281.

    [7] 花赟玥,杨超然,何国庆,等.考虑小干扰稳定和频率稳定的虚拟惯量配置分析[J].清华大学学报(自然科学版),2021,61(5):437-445.

    HUA Yunyue, YANG Chaoran, HE Guoqing, et al. Virtual inertia configuration analysis considering small-signal stability and frequency stability[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(5):437-445.

    [8]

    JULIA M, JASON M, NICK M, et al. A future with inverterbased resources:finding strength from traditional weakness[J].IEEE Power&Energy Magazine, 2021, 19(6):18-28.

    [9] 谢震,高翔,张悬光,等.弱电网下功率同步构网型DFIG的阻尼分析及转矩振荡抑制[J/OL].电力系统自动化[2023-03-01].https://kns. cnki. net/kcms/detail/32.1180. TP. 20230111.1522.001.html.XIE Zhen, GAO Xiang, ZHANG Xuanguang, et al. Damping analysis and torque oscillation suppression of power synchronized grid-forming doubly-fed induction generator in weak grid[J/OL].Automation of Electric Power Systems[2023-03-01]. https://kns.cnki.net/kcms/detail/32.1180.TP.20230111.1522.001.html.
    [10] 秦世耀,齐琛,李少林,等.电压源型构网风电机组研究现状及展望[J].中国电机工程学报,2023,43(4):1314-1334.

    QIN Shiyao, QI Chen, LI Shaolin, et al. Review of the voltagesource grid forming wind turbine[J]. Proceedings of the CSEE,2023, 43(4):1314-1334.

    [11] 人民网.国网湖北电力首次实现国内无储能支撑新能源电压源机组运行[EB/OL].[2023-05-27]. http://hb.people.com.cn/n2/2022/0314/c194063-35173448.html.

    People. cn. State Grid Hubei Electric Power Co., Ltd. has achieved the first domestic operation of renewable energy voltage source units without energy storage support[EB/OL].[2023-05-27]. http://hb.people.com.cn/n2/2022/0314/c194063-35173448.html.

    [12]

    NREL. Landmark demonstration shows how common wind turbine can provide fundamental grid stability[EB/OL].[2023-05-27]. https://www.nrel.gov/news/program/2021/landmarkdemonstration-shows-wind-turbine-can-provide-fundamental-gri d-stability.html.

    [13]

    QI Chen, QIN Shiyao, MIAO Fenglin, et al. Test and assessment of grid forming wind turbine based on controller hardware-in-the-loop[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration, October 22-24, Taiyuan, China.

    [14] 刘倪,张昌华,廖丽,等.计及无功电压环节的VSG虚拟转矩及振荡失稳机理分析[J].电力系统自动化,2019,43(6):107-115.

    LIU Ni, ZHANG Changhua, LIAO Li, et al. Analysis on virtual torque and oscillation instability mechanism of virtual synchronous generator with reactive power-voltage controller[J]. Automation of Electric Power Systems, 2019, 43(6):107-115.

    [15] 巨云涛,马雅蓉,齐志男.基于阻尼转矩分析的虚拟同步机对小干扰稳定的影响机理研究[J].中国电机工程学报,2020,40(增刊1):98-107.

    JU Yuntao, MA Yarong, QI Zhinan. Research on the effect mechanism of virtual synchronous generator on small-signal stability based on damped torque analysis[J]. Proceedings of the CSEE, 2020, 40(Supplement 1):98-107.

    [16]

    LIU J, MIURA Y, BEVRANI H, et al. Enhanced virtual synchronous generator control for parallel inverters in microgrids[J]. IEEE Transactions on Smart Grid, 2017, 8(5):2268-2277.

    [17]

    HUANG L B, XIN H H, WANG Z. Damping low-frequency oscillations through VSC-HVDC stations operated as virtual synchronous machines[J]. IEEE Transactions on Power Electronics, 2019, 34(6):5803-5818.

    [18] 付强,杜文娟,王海风.多虚拟同步发电机接入对电力系统机电振荡模式的影响[J].中国电机工程学报,2018,38(19):5615-5624.

    FU Qiang, DU Wenjuan, WANG Haifeng. Influence of multi virtual synchronous generators on power system electromechanical oscillation mode[J]. Proceedings of the CSEE, 2018, 38(19):5615-5624.

    [19] 柴建云,赵杨阳,孙旭东,等.虚拟同步发电机技术在风力发电系统中的应用与展望[J].电力系统自动化,2018,42(9):17-25.

    CHAI Jianyun, ZHAO Yangyang, SUN Xudong, et al.Application and prospect of virtual synchronous generator in wind power generation system[J]. Automation of Electric Power Systems, 2018, 42(9):17-25.

    [20] 电力网.明阳智能获全球首个构网型功能证书[EB/OL].[2023-05-27]. http://www. chinapower. com. cn/flfd/qyxx/20230116/184203.html.Chinapower. Mingyang Intelligent has obtained the world’s first grid forming function certificate[EB/OL].[2023-05-27].http://www. chinapower. com. cn/flfd/qyxx/20230116/184203.html.
    [21]

    QU Z S, PENG J C H, YANG H, et al. Modeling and analysis of inner controls effects on damping and synchronizing torque components in VSG-controlled converter[J]. IEEE Transactions on Energy Conversion, 2021, 36(1):488-499.

    [22] 褚文从,刘静利,李永刚,等.考虑源端特性的虚拟同步直驱风机小信号建模与稳定性分析[J].电力自动化设备,2022,42(8):3-10.

    CHU Wencong, LIU Jingli, LI Yonggang, et al. Small-signal modeling and stability analysis of virtual synchronous PMSG considering source characteristics[J]. Electric Power Automation Equipment, 2022, 42(8):3-10.

    [23] 王东泽,孙海顺,黄碧月,等.基于虚拟同步控制的电压源型直驱风电机组并网稳定性分析[J].高电压技术,2022,48(8):3282-3294.

    WANG Dongze, SUN Haishun, HUANG Biyue, et al.Analysis of grid-connected stability of voltage-source-type PMSG-based wind turbine based on virtual synchronous control[J]. High Voltage Engineering, 2022, 48(8):3282-3294.

    [24] 许诘翊,刘威,刘树,等.电力系统变流器构网控制技术的现状与发展趋势[J].电网技术,2022,46(9):3586-3595.

    XU Jieyi, LIU Wei, LIU Shu, et al. Current state and development trends of power system converter grid-forming control technology[J]. Power System Technology, 2022, 46(9):3586-3595.

    [25] 贾大江.永磁直驱风力发电机组的设计与技术[M].北京:中国电力出版社,2012.

    JIA Dajiang. Design and technology of permanent magnet direct drive wind turbine[M]. Beijing:China Electric Power Press,2012.

    [26]

    TAN Y J, MEEGAHAPOLA L, MUTTAQI K M. A suboptimal power-point-tracking-based primary frequency response strategy for DFIGs in hybrid remote area power supply systems[J]. IEEE Transactions on Energy Conversion, 2016,31(1):93-105.

    [27] 宫泽旭,艾力西尔·亚尔买买提,辛焕海,等.新能源电力系统并网设备小扰动稳定分析(一):机理模型与稳定判据适用性[J].中国电机工程学报,2022,42(12):4405-4419.

    GONG Zexu, YAERMAIMAITI Ailixier, XIN Huanhai, et al. Small signal stability analysis of equipment in renewable energy power system(partⅠ):mechanism model and adaptation of stability criterion[J]. Proceedings of the CSEE,2022, 42(12):4405-4419.

    [28] 倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.NI Yixin, CHEN Shousun, ZHANG Baolin. Theory and analysis of dynamic power system[M]. Beijing:Tsinghua University Press, 2002.
    [29] 杨兴武,鲍一鸣,孟致丞,等.基于阻抗重塑的虚拟同步机次同步振荡抑制方法[J/OL].中国电机工程学报[2023-03-01]. https://kns.cnki.net/kcms/detail/11.2107.TM.20230508.1240.002.html.YANG Xingwu, BAO Yiming, MENG Zhicheng, et al.Restraining method of subsynchronous oscillation in virtual synchronous generator based on impedance reshaping[J/OL].Proceedings of the CSEE[2023-03-01]. https://kns. cnki. net/kcms/detail/11.2107.TM.20230508.1240.002.html.
    [30]

    D’ARCO S, SUUL J A. Equivalence of virtual synchronous machines and frequency-droops for converter-based MicroGrids[J]. IEEE Transactions on Smart Grid, 2014, 5(1):394-395.

    [31]

    HUANG L B, XIN H H, ZHANG L Q, et al.Synchronization and frequency regulation of DFIG-based wind turbine generators with synchronized control[J]. IEEE Transactions on Energy Conversion, 2017, 32(3):1251-1262.

    [32] 马铱林,杨欢,屈子森,等.改善虚拟同步发电机阻尼特性的设计方法[J].电网技术,2021,45(1):269-275.

    MA Yilin, YANG Huan, QU Zisen, et al. Design method for improving damping characteristics of virtual synchronous generator[J]. Power System Technology, 2021, 45(1):269-275.

    [33]

    HISKENS I. IEEE PES task force on benchmark systems for stability controls[R]. USA:IEEE PES, 2013.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27

目录

    /

    返回文章
    返回