李玉京, 胡鹏飞, 曹宇, 于彦雪. 计及频率响应延时的构网型变流器惯量参数数据驱动估计方法[J]. 电力系统自动化, 2024, 48(19): 80-88.
引用本文: 李玉京, 胡鹏飞, 曹宇, 于彦雪. 计及频率响应延时的构网型变流器惯量参数数据驱动估计方法[J]. 电力系统自动化, 2024, 48(19): 80-88.
LI Yujing, HU Pengfei, CAO Yu, YU Yanxue. Data-driven Estimation Method for Inertia Parameters of Grid-forming Converter Considering Frequency Response Delay[J]. Automation of Electric Power Systems, 2024, 48(19): 80-88.
Citation: LI Yujing, HU Pengfei, CAO Yu, YU Yanxue. Data-driven Estimation Method for Inertia Parameters of Grid-forming Converter Considering Frequency Response Delay[J]. Automation of Electric Power Systems, 2024, 48(19): 80-88.

计及频率响应延时的构网型变流器惯量参数数据驱动估计方法

Data-driven Estimation Method for Inertia Parameters of Grid-forming Converter Considering Frequency Response Delay

  • 摘要: 大量可再生能源并网引起电力系统惯量水平降低,变流器的虚拟惯性控制技术有效提高了系统频率稳定性。在此背景下,评估变流器的惯量参数对于了解电力系统频率调节潜力有重大意义。然而,考虑到频率响应特性的差异,现有的应用于同步发电机的惯量估计方法不适用于基于数字控制的虚拟惯性。为了解决这一问题,文中提出了一种基于深度强化学习的非侵入式构网型变流器惯量参数在线估计方法。首先,分析了构网型变流器的频率响应原理和延时特性并进行了测试;随后,在深度强化学习框架下设计串联-并联辨识结构,采用近端策略优化方法建立考虑频率响应延时的演员网络和评论家网络,进而估计构网型变流器的惯量参数。最后,采用数值仿真和硬件在环实验验证了所提方法的有效性和精确性。

     

    Abstract: A large amount of renewable energy is integrated into the power grid, which reduces the inertia of the power system.The virtual inertia control(VIC) technology for the converter effectively improves the frequency stability of the power system. In this context, estimating the inertia parameter of the converter is of great importance to help understand the frequency-regulation potential of the power system. However, considering the differences in frequency response characteristics, the existing inertia estimation methods for synchronous generators are not suitable for the digital-control-based virtual inertia. To address this issue,this paper proposes a non-intrusive online estimation method of inertia parameters of the grid-forming converter based on deep reinforcement learning(DRL). First, the frequency response principle and delay characteristic of the grid-forming converter are analyzed and tested. Then, the series-parallel identification structure is designed in the DRL framework. The proximal policy optimization(PPO) method is used to establish actor and critic networks considering frequency response delay, further estimating the inertia parameters of the grid-forming converter. Finally, numerical simulation and hardware-in-the-loop experiments are used to verify the effectiveness and accuracy of the proposed method.

     

/

返回文章
返回