唐捷, 蔡永智, 周来, 羿应棋, 陈国培, 梁尚达, 张勇军. 基于数据驱动的低压配电网线户关系识别方法[J]. 电力系统自动化, 2020, 44(11): 127-134.
引用本文: 唐捷, 蔡永智, 周来, 羿应棋, 陈国培, 梁尚达, 张勇军. 基于数据驱动的低压配电网线户关系识别方法[J]. 电力系统自动化, 2020, 44(11): 127-134.
TANG Jie, CAI Yongzhi, ZHOU Lai, YI Yingqi, CHEN Guopei, LIANG Shangda, ZHANG Yongjun. Data-driven Based Identification Method of Feeder-Consumer Connectivity in Low-voltage Distribution Network[J]. Automation of Electric Power Systems, 2020, 44(11): 127-134.
Citation: TANG Jie, CAI Yongzhi, ZHOU Lai, YI Yingqi, CHEN Guopei, LIANG Shangda, ZHANG Yongjun. Data-driven Based Identification Method of Feeder-Consumer Connectivity in Low-voltage Distribution Network[J]. Automation of Electric Power Systems, 2020, 44(11): 127-134.

基于数据驱动的低压配电网线户关系识别方法

Data-driven Based Identification Method of Feeder-Consumer Connectivity in Low-voltage Distribution Network

  • 摘要: 低压配电网的线户关系自动识别是智能低压配电网实现的基础。通过分析低压配电网中负荷节点电压所呈现的空间、时间以及时空特性,依托"互联网+"智慧能源发展带来的海量电网运行数据,提出了基于数据驱动的低压配电网线户关系识别方法。通过建立基于基尔霍夫电流定律的优化模型,并将其转化为二次规划问题求解,实现低压配电网线户关系识别。同时为了提高求解效率并解决空房用户的识别问题,提出了一种基于电压时空特性的电能表聚类方法。73用户算例系统和多个试点台区应用效果验证了所提方法的有效性,并分析了电能表计量误差、数据长度对识别结果的影响。

     

    Abstract: The automatic identification of feeder-consumer connectivity in low-voltage distribution network(LVDN) is the basis of intelligent LVDN. By analyzing the space, time and spatiotemporal characteristics of the voltage for load nodes in LVDN, a datadriven based identification method of feeder-consumer connectivity in LVDN is proposed, relying on the massive operation data of power grid produced by the development of the"Internet + "smart energy. An optimization model based on Kirchhoff’s current law is established to identify feeder-consumer connectivity, which is transformed into a quadratic programming problem. At the same time, in order to improve the solution efficiency and solve the identification problem for vacant users, an electricity meter clustering method based on voltage spatiotemporal characteristics is proposed. The effectiveness of the proposed method is verified on a case system with 73 users and multiple pilot LVDNs. Furthermore, the influence of meter measurement error and data length on the recognition results is investigated.

     

/

返回文章
返回