吴承鑫, 沈海军, 王治华, 黄婷, 范帅, 何光宇. 数据驱动的变频空调负荷模型参数在线辨识方法[J]. 电力系统自动化, 2022, 46(1): 120-129.
引用本文: 吴承鑫, 沈海军, 王治华, 黄婷, 范帅, 何光宇. 数据驱动的变频空调负荷模型参数在线辨识方法[J]. 电力系统自动化, 2022, 46(1): 120-129.
WU Chengxin, SHEN Haijun, WANG Zhihua, HUANG Ting, FAN Shuai, HE Guangyu. Data-driven Online Identification Method for Parameters of Inverter Air-conditioning Load Model[J]. Automation of Electric Power Systems, 2022, 46(1): 120-129.
Citation: WU Chengxin, SHEN Haijun, WANG Zhihua, HUANG Ting, FAN Shuai, HE Guangyu. Data-driven Online Identification Method for Parameters of Inverter Air-conditioning Load Model[J]. Automation of Electric Power Systems, 2022, 46(1): 120-129.

数据驱动的变频空调负荷模型参数在线辨识方法

Data-driven Online Identification Method for Parameters of Inverter Air-conditioning Load Model

  • 摘要: 准确辨识空调负荷模型的参数是挖掘其节能及需求响应潜力的重要基础,当前研究大多采用精度较差的离线辨识方法。为此,基于数据驱动思想,提出一种变频空调模型参数在线辨识方法。首先,建立了数据驱动的空调负荷模型参数在线辨识架构。然后,基于空调负荷模型提出数据驱动的在线辨识机制和方法。其中,数据驱动的在线辨识机制设计为基于参数显著变化事件驱动的参数更新判别机制和基于历史参数波动范围的参数动态阈值设定机制,在该机制下通过粒子群优化算法建立了快速在线辨识方法。最后,通过实测环境,验证了所提在线辨识方法的有效性,与离线辨识方法相比,所提方法极大地提高了计算速度及准确度,可满足在线应用需要。

     

    Abstract: Accurately identifying the parameters of the air-conditioning load model is an important basis for tapping its energy saving and demand response potential. Current studies mostly adopt offline identification methods with low accuracy. Therefore, a data-driven online identification method of model parameters for air-conditioning is proposed. Firstly, the framework of data-driven online identification for parameters of the air-conditioning load model is established. Secondly, based on the air-conditioning load model, the data-driven online identification mechanism and method are proposed. Among them, the data-driven online identification mechanism is designed as the parameter update discrimination mechanism based on event-driven significant changes in parameters, and the dynamic threshold setting mechanism for parameters based on fluctuation ranges of historical parameters.Under this mechanism, a fast online identification method is established through the particle swarm optimization algorithm.Finally, the effectiveness of the proposed online identification method is verified in a practical experimental environment.Compared with offline identification methods, the proposed method improves the calculation speed and accuracy more greatly, and can meet the needs of online applications.

     

/

返回文章
返回