刘超, 李青, 马明明, 周立秋, 刘家国. 基于DATA模型的电动汽车充电需求时空演化规律分析[J]. 电力系统自动化, 2023, 47(12): 86-94.
引用本文: 刘超, 李青, 马明明, 周立秋, 刘家国. 基于DATA模型的电动汽车充电需求时空演化规律分析[J]. 电力系统自动化, 2023, 47(12): 86-94.
LIU Chao, LI Qing, MA Mingming, ZHOU Liqiu, LIU Jiaguo. Analysis on Spatial-temporal Evolution Law of Electric Vehicle Charging Demand Based on Dynamic Activity-Travel Assignment Model[J]. Automation of Electric Power Systems, 2023, 47(12): 86-94.
Citation: LIU Chao, LI Qing, MA Mingming, ZHOU Liqiu, LIU Jiaguo. Analysis on Spatial-temporal Evolution Law of Electric Vehicle Charging Demand Based on Dynamic Activity-Travel Assignment Model[J]. Automation of Electric Power Systems, 2023, 47(12): 86-94.

基于DATA模型的电动汽车充电需求时空演化规律分析

Analysis on Spatial-temporal Evolution Law of Electric Vehicle Charging Demand Based on Dynamic Activity-Travel Assignment Model

  • 摘要: “双碳”目标下,分析电动汽车(EV)交通需求与充电需求的时空分布规律是交通与电力系统协同运行的基础性工作,但现有研究较少能系统阐明私家EV及其充电需求的时空分布机理。文中从交通需求产生的源头出发,首先,分析了多模式交通系统中EV用户的交通行为与充电行为的关联;然后,综合考虑出行者的有限理性决策行为以及出行者之间的异质性,基于可接受规则建立了融合EV的动态活动-出行交通流分配(DATA)模型,刻画EV及其充电需求的时空演化机理;最后,基于route-swapping算法进行算例分析,结果表明所构建的模型能够描述EV及其充电需求的时空分布规律,且充电价格、初始荷电状态与其他出行方式都对充电需求的时空演化规律具有较大影响。

     

    Abstract: Under the goals of carbon emission peak and carbon neutrality, the analysis of spatial-temporal distribution rules of travel and charging demand of electric vehicles(EVs)is foundational for the coordinated operation of the traffic and power systems.However, few existing studies can systematically describe the spatial-temporal distribution mechanism of private EVs and their charging demand. Starting from the source of travel demand, firstly, the relevance between travel and charging behaviors of EV users is analyzed in a multi-modal transportation system. Secondly, considering the bounded-rationality decision-making behaviors and the heterogeneity of travelers, a tolerance-based dynamic activity-travel assignment(DATA)model is established to depict the spatial-temporal evolution mechanism of EVs and their charging demand. Finally, the case analysis is carried out based on the route-swapping algorithm. The results show that the proposed model can describe the spatial-temporal distribution rules of EVs and their charging demand. Moreover, the charging price, initial state of charge, and the existence of other travel modes have a significant influence on the spatial-temporal evolution rules of charging demand.

     

/

返回文章
返回