方勇, 杨洪耕, 肖先勇. 电力系统二阶共振点稳定模式的最简正规形分析[J]. 电力系统自动化, 2013, 37(4): 41-46.
引用本文: 方勇, 杨洪耕, 肖先勇. 电力系统二阶共振点稳定模式的最简正规形分析[J]. 电力系统自动化, 2013, 37(4): 41-46.
FANG Yong, YANG Hong-geng, XIAO Xian-yong. Simplest Normal Form Analysis of Power System Stable Modes at Second-order Resonance Point[J]. Automation of Electric Power Systems, 2013, 37(4): 41-46.
Citation: FANG Yong, YANG Hong-geng, XIAO Xian-yong. Simplest Normal Form Analysis of Power System Stable Modes at Second-order Resonance Point[J]. Automation of Electric Power Systems, 2013, 37(4): 41-46.

电力系统二阶共振点稳定模式的最简正规形分析

Simplest Normal Form Analysis of Power System Stable Modes at Second-order Resonance Point

  • 摘要: 电力系统在强非线性情况下会发生共振。运用最简正规形思想,推导了电力系统在二阶共振点处的最简正规形,解决了传统正规形在共振点处系数奇异的问题;通过计算近似解析解,修正了非线性参与因子,并且对主导稳定模式的变化过程进行分析,揭示了二阶共振点主导稳定模式形成的物理机理。仿真结果指出,靠近鞍结分岔的二阶共振是电压稳定主导模式形成的临界域,这种变化过程由共振项引起。所提方法对于深刻认识电压稳定与功角稳定的关系具有一定价值。

     

    Abstract: Power system resonance occurs in cases of strong non-linearity.This paper uses the simplest normal form theory to derive the simplest normal form of a power system at the second-order resonance point.This approach is able to solve the problem that traditional normal form coefficients at the second-order resonance point are strange.By calculating the approximate analytical solutions,participation factors can be fixed,the changing process of the dominant stability mode can be analyzed;then the physical mechanism caused by the second-order resonance point dominant stable mode can be revealed.The simulation results indicate that the second-order resonance close to the saddle-node bifurcation is the critical region which forms the voltage stability dominant mode.This change is caused by the resonance terms.The proposed method is useful for a profound understanding of the relationship between voltage stability and angle stability.

     

/

返回文章
返回