潘学萍, 薛禹胜, 鞠平. 关于轨迹特征根的再思考[J]. 电力系统自动化, 2013, 37(23): 39-44,118.
引用本文: 潘学萍, 薛禹胜, 鞠平. 关于轨迹特征根的再思考[J]. 电力系统自动化, 2013, 37(23): 39-44,118.
PAN Xueping, XUE Yusheng, JU Ping. Reconsideration of Trajectory Eigenvalue Method[J]. Automation of Electric Power Systems, 2013, 37(23): 39-44,118.
Citation: PAN Xueping, XUE Yusheng, JU Ping. Reconsideration of Trajectory Eigenvalue Method[J]. Automation of Electric Power Systems, 2013, 37(23): 39-44,118.

关于轨迹特征根的再思考

Reconsideration of Trajectory Eigenvalue Method

  • 摘要: 轨迹断面特征根法将非线性电力系统动态行为的分析转化为对带扰动项的时变线性系统的分析。通过2个有解析解的实例证明轨迹特征根并不能正确反映时变系统的全局动态。为此引入扩展轨迹特征根方法来反映上述扰动项对系统动态的影响,并以一个带e指数的简单系统为例给以验证。但对电力系统模型而言,扩展轨迹特征根方法存在着模型适应性和解析解两方面的困难。事实上所有的轨迹特征根技术都难以判断全局稳定性,而全局稳定性只能依靠动态鞍点(DSP)的概念才能解决。

     

    Abstract: The trajectory eigenvalue method transforms the nonlinear system model into a time-varying linear system model with a disturbing term.The analytical solutions of two examples show that trajectory eigenvalues cannot be used to determine the global stability of time-varying linear systems.For this reason,the extended trajectory eigenvalue analysis is introduced and its effect is validated by a simple system with an e-exponential component.However,the extended trajectory eigenvalue analysis cannot be applied to power systems,because their models are not consistent with the hierarchical equation,and the trajectory eigenvalues cannot be obtained analytically.In fact,all trajectory eigenvalue techniques are faced with the difficulty in determining the global stability of power systems,which can only be solved by the concept of the dynamic saddle point(DSP).

     

/

返回文章
返回