祁梦雪, 梅林珏昊, 李知艺, 辛焕海. 基于网络结构约简的配电网多日负荷曲线聚类方法[J]. 电力系统自动化, 2023, 47(5): 35-43.
引用本文: 祁梦雪, 梅林珏昊, 李知艺, 辛焕海. 基于网络结构约简的配电网多日负荷曲线聚类方法[J]. 电力系统自动化, 2023, 47(5): 35-43.
QI Mengxue, MEI Linjuehao, LI Zhiyi, XIN Huanhai. Multi-day Load Curve Clustering Method for Distribution Network Based on Network Structure Reduction[J]. Automation of Electric Power Systems, 2023, 47(5): 35-43.
Citation: QI Mengxue, MEI Linjuehao, LI Zhiyi, XIN Huanhai. Multi-day Load Curve Clustering Method for Distribution Network Based on Network Structure Reduction[J]. Automation of Electric Power Systems, 2023, 47(5): 35-43.

基于网络结构约简的配电网多日负荷曲线聚类方法

Multi-day Load Curve Clustering Method for Distribution Network Based on Network Structure Reduction

  • 摘要: 新型电力系统背景下,配电网末梢负荷波动态势复杂,负荷曲线聚类是简化负荷波动特性分析的有效手段。针对配电网末梢负荷,主流的单日负荷曲线聚类忽略了日间波动的差异性,而采用多日负荷曲线难以达到理想的聚类效果。鉴于此,提出一种基于网络结构约简理念的多日负荷曲线聚类新思路。首先,通过水平可视图方法生成聚类用户的负荷时间序列多层伴生网络;其次,针对所建立多层伴生网络的结构冗余性进行评估并对相似层进行聚合;最后从趋势效果、波动态势和社会属性3个方面对多日负荷曲线聚类结果进行可解释性分析。算例实验表明,相比于主流聚类方法,该方法能够高效处理多日配电网末梢负荷曲线聚类问题,且具有聚类过程免调参、聚类结果可解释性强等优势。

     

    Abstract: Under the background of new power system, load fluctuation at the end of the distribution network is complex, and load curve clustering is an effective method to simplify the analysis of load fluctuation characteristics. For the loads at the end of the distribution network, the mainstream single-day load curve clustering ignores the difference of daytime fluctuation, but the multiday load curve is difficult to achieve the ideal clustering effect. In view of this, this paper proposes a new clustering method for multi-day load curve based on the concept of network structure reduction. Firstly, the multilayer associated load time series network of clustered users is generated by horizontal visibility graph method. Secondly, the structural redundancy of the associated multilayer network is evaluated and the similar layers are aggregated. Finally, the interpretability of the multi-day load curve clustering results is analyzed from three aspects: trend effect, fluctuation trend and social attribute. The experimental results show that, compared with the mainstream clustering methods, this method can efficiently deal with the clustering problem of multi-day load curve, and has the advantages of free parameter tuning in the clustering process and strong interpretability of the clustering results.

     

/

返回文章
返回