苏向敬, 邓超, 栗风永, 符杨, 萧士渠. 基于MGAT-TCN模型的可解释电网虚假数据注入攻击检测方法[J]. 电力系统自动化, 2024, 48(2): 118-127.
引用本文: 苏向敬, 邓超, 栗风永, 符杨, 萧士渠. 基于MGAT-TCN模型的可解释电网虚假数据注入攻击检测方法[J]. 电力系统自动化, 2024, 48(2): 118-127.
SU Xiangjing, DENG Chao, LI Fengyong, FU Yang, XIAO Shiqu. Interpretable Detection Method for False Data Injection Attack on Power Grid Based on Multi-head Graph Attention Network and Time Convolution Network Model[J]. Automation of Electric Power Systems, 2024, 48(2): 118-127.
Citation: SU Xiangjing, DENG Chao, LI Fengyong, FU Yang, XIAO Shiqu. Interpretable Detection Method for False Data Injection Attack on Power Grid Based on Multi-head Graph Attention Network and Time Convolution Network Model[J]. Automation of Electric Power Systems, 2024, 48(2): 118-127.

基于MGAT-TCN模型的可解释电网虚假数据注入攻击检测方法

Interpretable Detection Method for False Data Injection Attack on Power Grid Based on Multi-head Graph Attention Network and Time Convolution Network Model

  • 摘要: 新型电力系统背景下,快速、准确的虚假数据注入攻击(FDIA)检测对电网安全运行至关重要。但现有深度学习方法未能充分挖掘电网量测数据的时序和空间特征信息,影响了模型的检测性能;同时,深度神经网络的“黑盒”属性降低了检测模型的可解释性,导致检测结果缺乏可信度。针对上述问题,提出了一种基于多头图注意力网络和时间卷积网络(MGAT-TCN)模型的可解释电网FDIA检测方法。首先,考虑电网拓扑连接关系与量测数据的空间相关性,引入空间拓扑感知注意力机制,建立多头图注意力网络(MGAT)提取量测数据的空间特征;接着,利用时间卷积网络(TCN)并行提取量测数据的时序特征;最后,在IEEE 14节点系统和IEEE 39节点系统中对所提MGAT-TCN模型进行仿真验证。结果表明,所提模型相比于现有检测模型具有更高的检测准确率和效率,且通过拓扑热力图对注意力权值可视化,实现了模型在空间维度的可解释性。

     

    Abstract: In the background of new power systems,fast and effective detection of false data injection attack(FDIA) is crucial for the safe operation of power grids.However,the existing deep learning methods do not fully explore the spatiotemporal feature information in measurement data of power grids,which affects the detection performance of models.Meanwhile,the “black box” attribute of deep neural networks reduces the interpretability of the detection model,leading to the lack of credibility in detection results.To solve the above problems,an interpretable FDIA detection method is proposed based on multi-head graph attention network and time convolution network(MGAT-TCN) model.First,considering the spatial correlation between power grid topology connection and measurement data,a spatial topology aware attention mechanism is introduced to establish the multi-head graph attention network(MGAT) to extract spatial features of measurement data.Next,the time convolution network(TCN) is used to extract the temporal features of the measurement data in parallel.Finally,the proposed MGAT-TCN model is simulated and validated on the IEEE 14-bus system and IEEE 39-bus system.The results indicate that the proposed model has higher detection accuracy and efficiency compared to the existing detection models,and the visualization of attention weights through topological heat maps can achieve interpretability of the model in spatial dimensions.

     

/

返回文章
返回