李婧祺, 王丹, 樊华, 杨东俊, 方仍存, 桑子夏. 含移动式储能的主动配电网分层优化控制方法[J]. 电力系统自动化, 2022, 46(10): 189-198.
引用本文: 李婧祺, 王丹, 樊华, 杨东俊, 方仍存, 桑子夏. 含移动式储能的主动配电网分层优化控制方法[J]. 电力系统自动化, 2022, 46(10): 189-198.
LI Jingqi, WANG Dan, FAN Hua, YANG Dongjun, FANG Rengcun, SANG Zixia. Hierarchical Optimal Control Method for Active Distribution Network with Mobile Energy Storage[J]. Automation of Electric Power Systems, 2022, 46(10): 189-198.
Citation: LI Jingqi, WANG Dan, FAN Hua, YANG Dongjun, FANG Rengcun, SANG Zixia. Hierarchical Optimal Control Method for Active Distribution Network with Mobile Energy Storage[J]. Automation of Electric Power Systems, 2022, 46(10): 189-198.

含移动式储能的主动配电网分层优化控制方法

Hierarchical Optimal Control Method for Active Distribution Network with Mobile Energy Storage

  • 摘要: 移动式储能技术具有灵活性强、应用场景广泛等优点。除应急供电外,移动式储能技术在配电网削峰填谷、提高电能质量等方面也有良好的应用前景。针对分布式发电接入的配电网的优化运行问题,文中考虑利用移动储能日常闲置情况提出了一种综合移动储能调度和无功优化的主动配电网分层控制策略。其中,上层优化模型综合考虑净负荷方差和移动储能总运行成本最优;下层优化模型考虑移动储能调度与无功优化相配合,以电网电压偏差最小、网损成本最小以及迁移成本最小为目标。此外,文中考虑该模型具有多维非线性特性,引入量子行为与概率表达特性,提出一种改进量子粒子群算法,采用量子位对粒子当前位置进行编码,利用量子行为进化方程实现对粒子最优位置的搜索,提高了算法收敛速度与寻优精度。最后,结合IEEE 33节点配电系统进行仿真分析,验证了所提控制策略和算法的有效性。

     

    Abstract: Mobile energy storage technology has the advantages of strong flexibility and wide application scenarios. In addition to emergency power supply, mobile energy storage technology also has good application prospects in distribution network in peak load shifting, improving power quality, and so on. In view of the optimal operation of the active distribution network with the integration of distributed generation, this paper proposes a hierarchical control strategy for an active distribution network that integrates mobile energy storage dispatch and reactive power optimization by making full use of the daily idle situation of mobile energy storage. The upper-level optimization model integrates the optimal net load variance and total operation cost of mobile energy storage, and the lower-level optimization model considers mobile energy storage dispatch in conjunction with reactive power optimization, with the objectives of minimizing grid voltage deviation, network loss cost and migration cost. In addition, this paper considers that the model has multidimensional nonlinear characteristics, introduces quantum behavior and probabilistic expression characteristics, proposes an improved quantum particle swarm algorithm, adopts quantum bits to encode the current position of particles, and uses quantum behavior evolution equation to realize the search for the optimal position of particles, which improves the convergence speed and the accuracy of the algorithm to find the optimal position. Finally, a simulation analysis is conducted with the IEEE 33-bus distribution system to verify the effectiveness of the proposed control strategy and algorithm.

     

/

返回文章
返回