宗柳, 李扬, 王蓓蓓. 计及需求响应的多维度用电特征精细挖掘[J]. 电力系统自动化, 2012, 36(20): 54-58.
引用本文: 宗柳, 李扬, 王蓓蓓. 计及需求响应的多维度用电特征精细挖掘[J]. 电力系统自动化, 2012, 36(20): 54-58.
ZONG Liu, LI Yang, WANG Bei-bei. Fine-mining of Multi-dimension Electrical Characteristics Considering Demand Response[J]. Automation of Electric Power Systems, 2012, 36(20): 54-58.
Citation: ZONG Liu, LI Yang, WANG Bei-bei. Fine-mining of Multi-dimension Electrical Characteristics Considering Demand Response[J]. Automation of Electric Power Systems, 2012, 36(20): 54-58.

计及需求响应的多维度用电特征精细挖掘

Fine-mining of Multi-dimension Electrical Characteristics Considering Demand Response

  • 摘要: 针对需求侧管理实施过程中需要准确把握用户用电特性的要求,从时间、类属、响应维度对用户的用电特征进行了精细化挖掘。结合系统聚类与模糊聚类的优点,引入二次聚类算法并进行改进,提取对应的负荷特征向量,从多个维度对用电特征进行了精细化分析。结果表明该算法简单有效,并能甄选参加各类需求响应项目的潜力用户,为项目制定提供中断容量、中断时间等具体信息,辅助评估项目实施的风险性和预期获得的各方面效益。

     

    Abstract: In view of the need of accurately grasping the characteristics of the user’s requirement for power consumption in the process of the demand side management(DSM),these characteristics are finely mined with respect to the dimensions of time,genre and response.The power consumption characteristics are finely analyzed from multiple dimensions by combining the advantages of the system clustering and fuzzy clustering,introducing and improving the secondary clustering algorithm,with the corresponding load characteristic vectors extracted for the clustering analysis.The results show that the improved algorithm is simple and effective,and capable of mining more effective information for the demand side as well as selecting potential users appropriate for DSM.It will provide specific information,such as outage capacity,outage time,and assist to estimate risks and benefits for the DSM subject.

     

/

返回文章
返回