孙辉, 杨帆, 高正男, 胡姝博, 王钟辉, 刘劲松. 考虑特征重要性值波动的MI-BILSTM短期负荷预测[J]. 电力系统自动化, 2022, 46(8): 95-103.
引用本文: 孙辉, 杨帆, 高正男, 胡姝博, 王钟辉, 刘劲松. 考虑特征重要性值波动的MI-BILSTM短期负荷预测[J]. 电力系统自动化, 2022, 46(8): 95-103.
SUN Hui, YANG Fan, GAO Zhengnan, HU Shubo, WANG Zhonghui, LIU Jinsong. Short-Term Load Forecasting Based on Mutual Information and Bi-directional Long Short-term Memory Network Considering Fluctuation in Importance Values of Features[J]. Automation of Electric Power Systems, 2022, 46(8): 95-103.
Citation: SUN Hui, YANG Fan, GAO Zhengnan, HU Shubo, WANG Zhonghui, LIU Jinsong. Short-Term Load Forecasting Based on Mutual Information and Bi-directional Long Short-term Memory Network Considering Fluctuation in Importance Values of Features[J]. Automation of Electric Power Systems, 2022, 46(8): 95-103.

考虑特征重要性值波动的MI-BILSTM短期负荷预测

Short-Term Load Forecasting Based on Mutual Information and Bi-directional Long Short-term Memory Network Considering Fluctuation in Importance Values of Features

  • 摘要: 在短期负荷预测中,含有循环单元的深度学习模型应用广泛,但训练时采用的权值共享结构具有时不变性,忽略了输入特征(气象、日期、历史负荷值等)在不同时刻下给负荷变化带来的不同影响,即权值共享结构无法追踪输入特征的重要性值波动。针对此问题,提出一种考虑特征重要性值波动的互信息(MI)-双向长短期记忆(BILSTM)网络预测方法。利用MI法提取输入特征在不同时刻下的重要性值,组成重要性值波动矩阵,并将其作为系数修正原输入特征。然后,代入BILSTM网络中完成训练和预测工作,弥补权值共享结构无法追踪特征重要性值波动的缺陷,进一步提高预测精度。最后,以某地区实际电网负荷数据为例,验证所提短期负荷预测方法的有效性。

     

    Abstract: In short-term load forecasting, deep learning models with recurrent units are widely used. However, the weight sharing structure used during training is time-invariant, ignoring different influence of input features(weather, date, historical load value,etc.) on load changes at different moments, ie., the weight sharing structure cannot track the fluctuations in the importance values of input features. To solve this problem, this paper proposes a forecasting method based on mutual information(MI) and bidirectional long short-term memory(BILSTM) network considering fluctuations in the importance values of features. The MI method is used to extract the importance value of input features at different moments, and constitute the fluctuant matrix of the importance values of input features, which is used as coefficients to correct the original input feature. Then, the corrected features are substituted into the BILSTM network to complete the training and forecasting, which makes up for the defect that the weight sharing structure cannot track the fluctuations in the importance values of input features and further improves the forecasting accuracy. Finally, taking the load data of the actual grid in a certain region as an example, the effectiveness of the proposed shortterm load forecasting method is verified.

     

/

返回文章
返回