DOI: 10.19783/j.cnki.pspc.200665

一种改进型配网自适应过流保护方法

高生凯1,曹炜1,张旭航1,2,赵宏成1,卫皇莅1

(1.上海电力大学电气工程学院,上海 200090; 2.国网上海市电力公司经济技术研究院,上海 200120)

摘要:在 DG 构成的配电网系统中,通常采用电流保护作为配网的主保护。其中电流保护的整定值为定值,随着 DG 的接入,配电网结构发生变化,DG 并入位置不同会带来故障点无法准确判定的问题。针对此问题,提出了一种基于通信的故障定位方案,具体是引入方向元件并建立信息传递通道检测电流流向来准确判定故障点位置。由于 DG 接入容量的不同和故障前后 DG 所发出电流数值变化,造成配网原有电流保护失配。针对此问题,提出一种改进型自适应过流保护算法,具体是通过检测故障电流正、负序含量,确定故障类型,采用不同的整定值,使得电流保护的整定值时刻变化,增强保护动作可靠性。将上述策略通过 PCSAD/EMTDC 仿真和动模实验室搭建实验模型来验证所提方案可以有效提高 DG 并网带来的保护动作准确性能。 关键词:DG; 配电网;故障定位;过流保护;自适应

EM: DO; 癿电网; 敀摩疋也; 过饥休!); 日坦应

A novel adaptive overcurrent protection method for a distribution network

GAO Shengkai¹, CAO Wei¹, ZHANG Xuhang^{1, 2}, ZHAO Hongcheng¹, WEI Huangli¹

(1. School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; 2. State Grid Shanghai Electric Power Corporation Economic and Technological Research Institute, Shanghai 200120, China)

Abstract: In a distribution network system composed of DG, current protection is usually adopted as its main protection. The setting value of current protection is a fixed value. With the access of DG, the structure of the network changes. Different locations of DG merging into it will bring the problem that the fault point cannot be accurately determined. In response to this, we propose a communication-based fault location scheme. It introduces directional components to detect the current flow to accurately determine the location of the fault point. The difference in DG access capacity and the change in the current value sent by DG before and after the fault cause an original current protection mismatch in the distribution network. We propose an improved adaptive overcurrent protection algorithm. By detecting the fault current positive and active sequence components, it determines the type of fault, and then uses different setting values, so that the setting value of current protection changes at any time, enhancing the reliability of protection action. The above strategy is verified by PCSAD/EMTDC simulation and experiment and shows that the proposed scheme can effectively improve the accuracy of the protection action brought by DG grid connection.

This work is supported by the Youth Fund of National Natural Science Foundation of China (No. 51807114). **Key words:** DG; distribution network; fault location; overcurrent protection; adaptive

0 引言

随着光伏、风能等新能源大幅接入电网,清洁 能源所具有的无污染性逐渐被人们所重视^[1-7]。与此 同时,所带来的负面影响也逐步增加,如新能源并 网使得配电网由传统的单辐射状态转变为多辐射状,

基金项目:国家自然科学基金青年基金项目资助(51807114)

严重影响配电网继电保护动作的可靠性^[8-13]。因此 研究 DG 并网对配网继电保护的影响具有重要的实际意义。

近年来,DG 接入配电网对继电保护的影响成 为了国内外的研究热点^[14-18]。对于 DG 接入电网后 故障定位困难以及继电保护整定等相关问题。国外 学者 Mahamad Nabab Alam 考虑了高渗透率 DG 并 网后的网络拓扑结构变化、公共耦合点的连接状态

以及 DG 所存在的低电压穿越特性后,提出一种基 于内点法的保护协调改进方案,具体是利用单个和 双重设置的数字方向性过电流继电器进行保护配置 的优化^[19]。国外学者 Manjeet Singh 考虑了 DG 并网 后 X/R 的影响,并通过分析故障电流的正序和零序 分量,确定故障位置,并依此进行故障识别,但对 于配网电流保护的整定并未提出相应的改进措施, 因此 DG 并网所产生的配网保护影响并未得到有效 解决^[20]。反观国内研究进展,国内学者利用目前发 展较为迅速的智能技术与配电网络相结合,针对 10 kV 配电网,提出一种基于配网拓扑变化的自适 应保护方案,有效降低了配网运维成本,并且针对 传统过流保护无故障定位功能,引入一种广域控制 方案,可有效地减少故障定位和隔离时间^[21]。文献 [22]提出了一种基于线路电流差动(LCD)继电器的 保护方案,利用光纤传递信息,并引入带有逻辑辨 识的自动切换模块,提高了系统切除故障的可靠性。 文献[23]将区域电流代数和变化作为判定故障的依 据,对含有高密度分布式电源的配电网实现快速故 障定位。文献[24-25]针对传统的反时限电流保护, 提出一种基于电压因子修正的保护方案。文献[26] 通过引入故障限流器(FCL)来减少含 DG 配电网发 生故障时故障电流所产生的影响,并针对 DG 并网 点的近端和远端故障,确定 FCL 安装位置及阻抗值 大小, 使过流保护与 FCL 最优分配相结合, 改善 DG 并网对配网继电保护装置的影响。文献[27]针对 大规模 DG 接入配电网所带来的电流保护、自动重 合闸以及电能质量的影响,提出一种改进重合闸时 间配合措施来提升 DG 并网的供电可靠性。

本文首先分析了传统自适应保护在 DG 接入后的缺点,然后针对 DG 接入配电网后存在的故障定 位不准确问题,提出了一种基于通信的故障定位方 案;接着为了解决 DG 接入配网存在的电流保护失 配问题,提出了一种改进自适应保护算法;最后将 上述措施通过 PSCAD/EMTDC 仿真和利用动模实 验室搭建实验模型来验证本文所提方案的有效性。

1 传统自适应保护原理及缺点

传统的自适应保护与电流保护相比,存在一定 的优越性,可实现在不同运行状态以及故障类型下 的保护功能。整定值的确定需要确定故障类型、设 定系统等值电势、实时测定保护处电压电流数据, 计算等值阻抗与等值电势。传统自适应电流速断保 护整定公式如式(1)所示^[28-31]。

$$I_{\rm act} = K_{\rm d} K_{\rm k} \frac{E}{Z_{\rm s} + \alpha z l} \tag{1}$$

DG 接入配电网后,对传统的自适应保护的影响从以下两个方面去论述^[32-33]:

1) 分布式电源侧等值电动势与等值阻抗的计算

如图 1 所示,当故障点 f 距离母线 B 越近时, DG 距离故障点的距离越近, Z_{dg}越小,此时 DG 所 提供的故障电流越大,此时 DG 侧的等值电动势变 大;若 DG 的容量越大,此时 DG 所产生的的电流 发生变化,也会影响 DG 侧的等值电动势,因此, 故障下游的分布式电源侧的等值电势不是定值,随 着 DG 容量和短路的位置变化而变化。

2)故障类型系数的确定。如图1所示,系统发 生不同类型故障时,DG所产生的故障电流不同, 此时不适用于正序等效定则。

图 1 含 DG 的配电网故障等效图

Fig. 1 Equivalent diagram of distribution network fault with DG

2 基于通信的自适应保护算法原理与实现

2.1 基于通信的自适应保护结构

图 2 为基于通信的自适应保护,虚线表示通信 光纤,中央保护单元模块是整个通信系统的控制中 心,收集每条分支线路反馈回的电气量信息。中央 单元模块包含自适应元件,实时更新由分支线路反 馈回的电压降落值、电流大小以及方向反馈值等信 息,并可比较实测值与整定值大小,对相应的继电 保护装置发送动作指令,可精确定位故障位置,实 时更新保护定值。

如图 2 所示,在 DG 所在输电线路母线两侧加 装方向元件,若为系统单独提供或系统和 DG 共同 提供,则记为 "+",若为 DG 单独提供或无电流流 过,则记为 "-",故障定位原理如下所示:

1) 若 DG 并网母线两侧的方向元件检测结果反 馈值均为 "+",则故障点位于 DG 接入点下游。以 图 2 为例,当 f2 故障时,通过检测母线 C 两侧方向 元件的反馈值(++)可知故障点位于 DG 接入点下游, 进一步检测母线 D(++)和母线 E(--)两侧方向元件 的返回值完成故障定位。

2) 若两个相邻母线间检测结果反馈值一侧均为"+",一侧均为"-",则故障点位于 DG 接入点上游。以图 2 为例,当 f4 故障时,通过检测母线 C(--)两侧方向元件的反馈值可知故障点位于 DG 接入点上游,进一步检测母线 A(++)和母线 B(--) 两侧方向元件的返回值完成故障定位。

2.2 自适应过流保护算法

1) DG 并网点下游发生不对称故障时,如两相 短路故障,系统序网图如图 3。

图 3 故障点位于 DG 接入点下游

Fig. 3 Fault point is located downstream of DG access point

通过图4可以得出等效网络图。

Fig. 4 Positive and negative sequence network diagram of DG access point downstream faults

由图 5 可以求得母线 C 处的电压:

$$U_{\rm C} = I_{\rm QF3}(Z_{\rm s} + Z_{\rm AC} + 2\alpha Z_{\rm CD})$$
 (2)
 $Z_{\rm s} + Z_{\rm AB} \xrightarrow{Z_{\rm BC}} C \xrightarrow{2\alpha Z_{\rm CD}} Z_{\rm s} + Z_{\rm AB} + Z_{\rm BC}$
 $E \bigcirc U_{\rm B} \xrightarrow{I_{\rm QF2}} U_{\rm C} \bigcirc DG$

图 5 DG 接入点下游故障等效网络图 Fig. 5 Equivalent network diagram of DG access point downstream 因此保护 QF3 的整定值按式(3)整定。

$$Y_{\text{act.QF3}}^{I} = \left| K_{\text{rel}}^{I} \frac{U_{\text{C}}}{Z_{\text{s}} + Z_{\text{AC}} + 2Z_{\text{CD}}} \right|$$
(3)

为使得当线路发生不对称故障时能保护线路全 长,令 α 取 1,计算故障线路末端母线侧发生不对 称故障时的故障电流为保护 QF3 的整定值。

*K*_b为 CD 线路末端发生短路故障时,流过保护 QF2、QF3 的电流之比。将其定义为分支系数:

$$K_{\rm b} = \frac{I_{\rm QF2}}{I_{\rm QF3}} \leq 1 \tag{4}$$

DG 接入点上游保护 QF2 的 II 段整定值按照式 (5)整定。

$$I_{\text{act.QF2}}^{\text{II}} = K_{\text{rel}}^{\text{II}} K_{\text{b}} I_{\text{act.QF3}}^{\text{I}}$$
(5)

2) DG 并网点下游发生对称故障时,保护装置的整定电流通过计算故障点所在线段末端故障时的最大故障电流整定。

如图 6 所示,将 α 取值为 1,可计算流过保护 QF3 的故障电流,该电流由系统和 DG 电源共同 提供。

图 6 DG 接入点下游对称故障等效网络图

Fig. 6 Equivalent network diagram of symmetrical faults downstream of DG access points

$$I_{\rm QF3} = \frac{E_{\rm s}}{Z_{\rm s} + Z_{\rm AD}} + I_{\rm DG} \frac{Z_{\rm s} + Z_{\rm AC}}{Z_{\rm s} + ZZ_{\rm AD}}$$
(6)

$$I_{\text{act.QF3}}^{\text{I}} = \left| K_{\text{rel}}^{\text{I}} I_{\text{QF3}} \right| \tag{7}$$

DG 接入点上游保护 QF2,由于 DG 电源所提供的外汲作用,导致流过保护 QF2 的电流减小,因此需降低上游保护的 II 段整定值。

此时分支系数计算式为

$$K_{\rm b} = \frac{I_{\rm QF2}}{I_{\rm QF3}} \le 1 \tag{8}$$

DG 接入点上游保护 QF2 的整定值按照式(9) 整定。

$$I_{\text{act.QF2}}^{\text{II}} = K_{\text{rel}}^{\text{II}} K_{\text{b}} I_{\text{act.QF3}}^{\text{I}}$$
(9)

DG 并网点上游发生不对称故障时:如两相短路故障,首先需要在 DG 接入母线上游添加保护装置,如 QF5。如图 7 所示。

图 7 故障点位于 DG 接入点上游

Fig. 7 Fault point is upstream of pv access point

限于篇幅,分析原理同下游故障相同,在此不加赘述,QF2、QF5 整定式如下。

$$I_{\text{act.QF2}}^{I} = \left| K_{\text{rel}}^{I} \frac{U_{\text{B}} - I_{\text{DG}}(Z_{\text{s}} + Z_{\text{AC}})}{Z_{\text{s}} + Z_{\text{AB}} + 2Z_{\text{BC}}} \right|$$
(10)

$$I_{\text{act.QF5}}^{\text{I}} = \left| K_{\text{rel}}^{\text{I}} \frac{2U_{\text{C}} - E_{\text{s}}}{Z_{\text{s}} + Z_{\text{AB}} + 2Z_{\text{BC}}} \right|$$
(11)

DG 接入点上游发生对称故障时,QF2 整定值 不变,QF5 整定式如式(12)。

$$I_{\text{act.QF5}}^{\text{I}} = \left| K_{\text{rel}}^{\text{I}} \frac{U_{\text{C}}}{Z_{\text{BC}}} \right|$$
(12)

2.3 自适应电流保护流程图(图 8)

图 8 自适应电流保护流程图

Fig. 8 Flow chart of current adaptive protection

本文所提自适应电流保护由判定故障位置、检测故障类型以及实时计算保护整定值三部分组成。

3 算例验证

利用 PSCAD/EMTDC 搭建仿真模型,选取配 电网电压等级为10 kV,基准电压为10.5 kV,保护 配置情况为瞬时电流速断保护和限时电流速断保护 构成两段保护,瞬时电流速断保护可靠系数取值 1.25,限时电流速断保护可靠系数取值 1.1,系统最 大运行方式下阻抗值取 0.091,最小运行方式下阻抗 值取 0.126。图 9 为配电网结构示意图;图 10 为含 DG 的配电网系统结构图。表 1 为系统保护整定值。

图 9 配电网结构示意图

Fig. 9 Schematic diagram of distribution network structure

图 10 含 DG 的配电网系统结构图

Fig. 10 Distribution network system structure

diagram with DG supply

表1 系统保护整定值

Table 1 System protection setting

			-
保护名称	线路末端三相	电流速断	限时电流
	短路电流/kA	保护/kA	速断保护/kA
QF1	6.0	7.5	4.7
QF2	3.26	4.1	2.38
QF3	1.65	2.07	1.168
QF4	0.8	1.02	—

采用图 10 的模型进行算例分析,验证在不同并 网 DG 容量下,配电网不同位置发生故障时采用本 文所提改进自适应过流保护算法的可行性。

并网 DG 容量采用 8 MVA、10 MVA、20 MVA 进行分析,并网点在母线 C 处。选取线路的 30%和 60%来模拟不同位置发生故障,比较不同情况下输 电线路所配置保护的整定值和实测值。

3.1 仿真波形分析

若配电网采用传统的过流保护,基于图 9 的仿 真模型中,设置 0.7 s 时加入短路故障,故障设置持 续时间为 0.1 s,断路器延时时间设置为 0.05 s,0.85 s 重合闸动作,系统恢复供电。设 DG 容量为 8 MVA, 观察 DG 接入前后并入点上下游短路故障时的电流 变化情况。

1) DG 接入点下游 f1 发生三相短路故障

在 CD 线路 80%处发生三相短路故障时,流过 保护 QF2、QF3、QF4 的电流波形如图 11 所示。图 12 为系统接入 DG 时 fl 发生三相短路故障的电流 波形。

图 11 系统未接入 DG 时 fl 发生三相短路故障的电流波形 Fig. 11 Current waveform of three-phase short-circuit fault in fl when the system is not connected to DG

通过比较图 11 和图 12 发生故障时流过保护 Q F2、QF3、QF4 的故障电流数值,未接入 DG 时, 流过 QF2、QF3 的电流均为 2 558 A,依据表 1 系统 保护整定值可知,保护 QF3 的电流保护 I 段可有效 切除故障,QF2 的电流 II 段保护可作为 QF3 的后备 保护,当 QF3 保护拒动时可利用 QF2 的延时动作。 在接入 DG 后,流过保护 QF2 的电流为 2 310 A, 流过 QF3 的电流为 2 718 A,此时流过 QF3 的电流 增加是由于 DG 对并网点下游的助增作用,流过 Q F2 的电流减少是由于 DG 对并网点对上游的外汲作用。

上述现象所造成的的后果是:由于 DG 的助增 作用,导致流过 QF3 的故障电流增大,扩大 QF3 的保护范围,若其保护范围延伸至下级线路,会使 保护 QF3、QF4 无法正常配合,扩大停电范围。同 理,由于 DG 对上游线路的外汲作用,会减少流过 保护 QF2 的故障电流,如图 12 可知,接入 DG 后 流过保护 QF2 电流为 2 310 A,小于 QF2 的电流 II 段动作的整定电流 2 380 A,此时 QF2 无法作为 QF 3 的后备保护,使得 QF2 的保护范围缩短,产生保 护拒动的可能性。

2) DG 接入点上游 f2 发生三相短路故障

在 BC 线路 70%处发生三相短路故障时,流过 保护 QF2 和 QF5 的电流波形如图 13 所示。图 14 为系统接入 DG 时 f2 发生三相短路故障的电流波形。

图 13 系统未接入 DG 时 f2 发生三相短路故障的电流波形 Fig. 13 Current waveform of three-phase short-circuit fault

in f2 when the system is not connected to DG

图 14 系统接入 DG 时 f2 发生三相短路故障的电流波形 Fig. 14 Current waveform of three-phase short-circuit fault in f2 when the system is connected to DG

- 114 -

通过比较图 13 和图 14 发生故障时流过保护 QF2 和 QF5 的故障电流数值,未接入 DG 时,流过 QF2 的故障电流为 5 429 A,该数值大于 QF2 的电 流 I 段保护,且大于 QF1 的 II 段保护,因此 QF2 可以瞬时切除故障,若 QF2 主保护拒动,QF1 的电 流 II 段保护可作为 QF2 的后备保护延时 0.5 s 跳闸 切除故障。在接入 DG 后,流过保护 QF2 的电流依 旧为 5 429 A,但此时 QF5 电流与未接入 DG 相比, 并不是 0,此时流过 QF5 的故障电流为 651 A。

上述现象所造成的后果是: DG 并网点上游发 生故障时,在 DG 的作用下,DG 依旧向故障点输 送电流,若此时重合闸动作,可能造成非同期重合 闸,产生较大的短路电流,对系统的稳定性造成 影响。

通过分析上述波形可以得出以下结论:

 1)故障点位于光伏接入点下游时,存在助增和 外汲现象,造成下游保护灵敏度增大,存在误动可 能;上游保护灵敏度降低,存在拒动可能性。造成 保护之间不能可靠配合,扩大停电范围,对配电网 的可靠持续供电造成一定影响。

2) 故障点位于光伏接入点上游时,若为瞬时性 故障,存在非同期重合闸现象,产生较大的短路电 流,对系统运行稳定性造成影响。

3.2 仿真数据分析

为验证本文所提改进自适应电流保护的有效 性,对不同故障类型、不同 DG 容量以及不同故障 点处均进行故障仿真分析,仿真结果以数据形式展 现,验证本文所提方案的有效性。

1) 系统发生对称故障时

表 2 为 CD 线路发生三相短路仿真数据。

表 2 CD 线路发生三相短路仿真数据

Table 2 Simulation results of three-phase short

circuit in CD line							
故障	DG 容量/	QF3/kA(I 段)		QF2/kA(II 段)			
位置	MVA	整定值	测量值	整定值	测量值		
30%CD	8	2.58	3.242	2.054	2.582		
	10	2.592	3.370	1.957	2.545		
	20	3.08	4.010	1.81	2.360		
60%CD	8	2.58	2.624	1.931	1.964		
	10	2.592	2.727	1.807	1.902		
	20	3.08	3.244	1.513	1.594		

由表2可知:

(1) 在相同 DG 容量下,故障点越靠近 DG 并网 点,并网点下游电流助增现象越严重,此时会导致 QF3 的灵敏度增大,扩大其保护范围,误动的可能 性增加;故障点越远离 DG 并网点,并网点上游外 汲现象越严重,通过对比表1和表2可知,QF2在 容量增加或故障点距离并网点越远时,故障电流小 于 QF2 的 II 段动作电流,QF2 的拒动可能性增大, QF2 与 QF3 失去配合。

(2) 在相同故障距离情况下,DG 容量越大,对 并网点下游保护所产生的助增电流越大,保护误动 作的可能性就越大;对并网点上游保护所产生的外 汲电流越大,保护拒动的可能性越大。

(3) 采用本文所提的改进自适应电流保护后:保护 QF3 的整定值随着 DG 容量的增大而增大,使 QF3 的电流 I 段保护准确动作。QF2 的电流 II 段保 护依旧可以作为 QF3 的后备保护,并且保护动作值 随 DG 容量的变化而实时变化,满足电流保护的可 靠性与选择性。

由表 3 可以看出: (1) 当 DG 并网点上游发生故 障时, DG 容量大小对故障点上游保护 QF2 无影 响,因此采用原有配网保护整定即可。(2) DG 并网 点与故障点之间需配置保护 QF5, BC 线路发生时 QF5 电流保护 I 段可以准确动作,一方面可以确保 发生故障时能够迅速断开 DG 电源与故障点之间的 联系,另一方面也可预防瞬时性故障时非同期重合 闸现象。

表 3 BC 线路发生三相短路仿真数据

Table 3 Simulation data of three-phase short-circuit in BC line

故障	DG 容量/	QF2/kA(I 段)		QF5/k	QF5/kA(I 段)	
位置	MVA	整定值	测量值	整定值	测量值	
30%BC	8	4.1	6.485	0.525	0.625	
	10	4.1	6.485	0.683	0.814	
	20	4.1	6.485	1.354	1.613	
60%BC	8	4.1	5.435	0.304	0.634	
	10	4.1	5.435	0.396	0.827	
	20	4.1	5.435	0.782	1.629	

2) 系统发生不对称故障时

表4一表6为 CD线路发生两相短路仿真结果。 表4 CD线路发生两相短路仿真结果

Table 4 Simulation results of two-phase short-circuit in CD line

故障	DG 容量/	QF3/k	QF3/kA(I 段)		A(II 段)
位置	MVA	整定值	测量值	整定值	测量值
30%CD	8	1.66	2.647	1.351	2.155
	10	1.721	2.737	1.326	2.109
	20	2.075	3.301	1.205	1.918
	8	1.87	2.146	1.428	1.639
60%CD	10	1.932	2.217	1.371	1.574
	20	2.299	2.638	1.102	1.265

表 5 CD 线路发生单相接地短路仿真结果

Table 5 Simulation results of single-phase grounding

short circuit in CD line							
故障	DG 容量/	QF3/kA(I 段)		QF2/k/	A(II 段)		
位置	MVA	整定值	测量值	整定值	测量值		
30%CD	8	1.85	2.940	1.560	2.480		
	10	1.905	3.030	1.534	2.440		
	20	2.213	3.521	1.409	2.243		
60%CD	8	1.490	2.370	1.190	1.893		
	10	1.535	2.442	1.150	1.830		
	20	1.8	2.865	0.952	1.516		

表 6 CD 线路发生两相接地短路仿真结果

Table 6 Simulation results of two-phase ground

short circuit in CD line							
故障	DG 容量/	QF3/kA(I 段)		QF2/kA(II 段)			
位置	MVA	整定值	测量值	整定值	测量值		
	8	1.857	2.954	1.562	2.486		
30%CD	10	1.922	3.057	1.534	2.440		
	20	2.218	3.529	1.409	2.243		
	8	1.495	2.377	1.194	1.899		
60%CD	10	1.54	2.450	1.156	1.840		
	20	1.806	2.872	0.956	1.521		

由表4一表6可以看出:(1) 当发生相间短路时: 采用文中所提的电流整定方式可以使得 DG 接入点 下游保护 QF3 整定值随着 DG 容量的增大而增大, QF2 电流保护 II 段可作为 QF3 的后备保护,可有效 解决助增作用所产生的灵敏度增高而导致的误动、 外汲作用所产生的灵敏度降低而导致的拒动现象。 (2) 当发生接地短路时:采用文中所提的电流整定方 式可以使得在不同 DG 并网容量、不同故障位置时 可以准确动作。有效地验证了在故障定位后,不对 称故障均可采用文中所提的改进型自适应保护整定 式进行实时整定。

表 7 为 BC 线路发生两相短路仿真结果。 表 7 BC 线路发生两相短路仿真结果

Table 7 Simulation results of two-phase short-circuit in BC line

故障	DG 容量/	QF2/kA(I 段)		QF5/kA(I段)	
位置	MVA	整定值	测量值	整定值	测量值
30%BC	8	2.971	5.670	0.573	0.635
	10	2.927	5.655	0.718	0.795
	20	2.74	5.635	1.423	1.575
60%BC	8	3.332	4.600	0.522	0.647
	10	3.312	4.603	0.659	0.817
	20	3.298	4.715	1.282	1.589

由表 7 可以看出: (1) 当 DG 并网点上游发生不 对称故障时,采用文中所提的电流整定方式可以使 得故障点上游保护 QF2 电流保护 I 段随着 DG 容量 的增大而实时变化,确保保护 QF2 可以准确跳闸。 (2) DG 并网点上游保护 QF5 随着 DG 容量的变化而 实时变化,在不同 DG 容量与故障距离情况下,进 行故障位置确定后,依据故障情况实时改变动作整 定值,实现 BC 线路任何位置出现两相短路时,保 护 QF5 均能准确动作。

4 实验分析

为了验证本文所提改进方案的可行性,搭建 DG 并网的简易平台,实验平台硬件如下:逆变器 选择 SUNGROW 公司的 SG10KTL-EC,故障模拟 柜选择上海文顺电气公司的 WSTF-10JKIA-380 V, 示波器选择中元华电的 ZH-102 便携录波仪。实验 参数和仿真参数类似,观测本文所提自适应保护算 法的 DG 输出电流变化以及故障检测是否能够实 现。图 15—图 22 为各项仿真波形。

Fig. 16 Current components before and after three-phase short-circuit fault

高生凯,等 一种改进型配网自适应过流保护方法

图 19 单相接地短路前后故障电流变化 Fig. 19 Change of fault current before and after single-phase grounding short circuit

图 20 单相接地短路故障前后电流成分 Fig. 20 Current components before and after single-phase ground short circuit fault

图 22 两相接地短路故障前后电流成分 Fig. 22 Current components before and after

two-phase ground short circuit fault

通过对比不同类型故障前后的电流变化及故障 电流成分可以看出:(1)采用实验模型模拟配网发生 故障时,DG 输出电流具有一定的限幅功能,故障 时 DG 输出故障电流为额定电流 1.3~1.5 倍。(2)实 验模型模拟配网发生三相短路时,故障前后电流成 分为正序分量,不存在负序和零序分量;模拟不对 称故障时,故障前后电流成分为正序分量和少量负 序分量;模拟不对称接地故障时,故障前后电流成 分为正序分量和少量负序分量,不存在零序分量。

通过采用动模实验室搭建实验模型,所得结论 可以佐证本文所提的保护整定方法以及故障类型判 定的有效性。

5 结论

本文以10 kV的典型DG 接入配网为研究模型, 针对传统 DG 接入配网导致电网结构变化,故障无 法准确定位的问题,提出一种基于通信线路的故障 定位方案;针对配网电流保护失配问题,提出了一 种改进型自适应保护算法。

仿真和实验结果表明:本文所提的自适应保护 算法在不同 DG 容量、不同故障位置、不同故障类 型下均能够可靠动作,保证了供电可靠性,提高了 DG 并网中各个电源点的利用率。本文所提方案具 有一定的工程应用价值。

参考文献

[1] 于森,汤亚芳,黄亦欣,等. 双馈风机控制方式对继电 保护影响的研究[J]. 电力系统保护与控制, 2020, 48(2): 180-187.

YU Miao, TANG Yafang, HUANG Yixin, et al. Research on the influence of doubly-fed fan control mode on relay protection[J]. Power System Protection and Control, 2020, 48(2): 180-187.

[2] 张安龙,李艳,黄福全,等.基于动态拓扑分析的配电 网自适应保护与自愈控制方法[J].电力系统保护与控 制,2019,47(11):111-117.

ZHANG Anlong, LI Yan, HUANG Fuquan, et al.

Adaptive protection and self-healing control method for distribution network based on dynamic topology analysis[J]. Power System Protection and Control, 2019, 47(11): 111-117.

- [3] 刘力,于佳丽.不对称电网电压下光伏并网逆变器控制策略研究[J].太阳能学报,2017,38(10):2848-2856.
 LIU Li, YU Jiali. Research on control strategy of photovoltaic grid-connected inverter under asymmetric gridvoltage[J]. Acta Eergiae Solaris Sinica, 2017, 38(10): 2848-2856.
- [4] 孔祥平,张哲,尹项根,等.含逆变型分布式电源的电 网故障电流特性与故障分析方法研究[J].中国电机工 程学报,2013,33(34):65-74,13.

KONG Xiangping, ZHANG Zhe, YIN Xianggen, et al. Research on fault current characteristics and fault analysis method of power grid with inverter type distributed power supply[J]. Proceedings of the CSEE, 2013, 33(34): 65-74, 13.

 [5] 奚鑫泽,徐志,高尚.直流变压器光伏中压并网故障运行特性研究[J].电力科学与技术学报,2020,35(5): 89-95.

XI Xinze, XU Zhi, GAO Shang. Fault operation of DC transformer for the PV medium voltage DC grid[J]. Journal of Electric Power Science and Technology, 2020, 35(5): 89-95.

[6] 明潇宇,吕飞鹏,余晓,等.含T接逆变型分布式电源 配电网的纵联保护方案[J].电测与仪表,2020,57(11): 74-79.

MING Xiaoyu, LÜ Feipeng, YU Xiao, et al. Vertical protection scheme of distributed power distribution network with T-connected inverter[J]. Electrical Measurement & Instrumentation, 2020, 57(11): 74-79.

- [7] XIAO Yang, OUYANG Jinxin, XIONG Xiaofu, et al. Fault protection method of single-phase break for distribution network considering the influence of neutral grounding modes[J]. Springer Singapore, 2020, 5(16).
- [8] 吕承, 邰能灵, 郑晓冬, 等. 基于边界电流的柔性直流 线路保护新方案[J]. 电力科学与技术学报, 2020, 35(1): 115-121.
 LÜ Cheng, TAI Nengling, ZHENG Xiaodong, et al.

Protection novel scheme for flexible DC line based on boundary current[J]. Journal of Electric Power Science and Technology, 2020, 35(1): 115-121.

[9] 王增平,杨国生,王志洁,等.继电保护相关的国内外 分布式电源并网标准[J].中国电力,2019,52(8): 112-119.

WANG Zengping, YANG Guosheng, WANG Zhijie, et al. Domestic and international distributed power grid connection standards related to relay protection[J]. Electric Power, 2019, 52(8): 112-119.

[10] SULIMAN M Y, GHAZAL M. Design and implementation of overcurrent protection relay[J]. Springer Singapore, 2020, 15(4).

[11] 焦彦军,梁宵,蒋晨阳. 计及LVRT光伏电站并网下方向元件动作区域计算[J]. 电力自动化设备, 2017, 37(7): 20-24.

JIAO Yanjun, LIANG Xiao, JIANG Chenyang. Taking into account the calculation of the action area of the directional element under the connection of the LVRT photovoltaic power plant[J]. Electric Power Automation Equipment, 2017, 37(7): 20-24.

[12] 孙玉伟, 刘亚东, 方健, 等. 分布式光伏接入对配电网 线路故障定位的影响分析[J]. 智慧电力, 2020, 48(9): 102-107.

SUN Yuwei, LIU Yadong, FANG Jian, et al. Analysis of the influence of distributed photovoltaic access on fault location of distribution network lines[J]. Smart Power, 2020, 48(9): 102-107.

- [13] 王卫卫,李可.分布式 DG 发电及其对配电网的影响 综述[J].电力学报, 2017, 32(6): 466-470.
 WANG Weiwei, LI Ke. Overview of distributed DG power generation and its impact on distribution network[J]. Journal of Electric Power, 2017, 32(6): 466-470.
- [14] 李永. 含 DG 的配电网保护新方案[J]. 南方农机, 2020, 51(1): 130-131.
 LI Yong. A new scheme for distribution network protection with DG[J]. Southern Agricultural Machinery, 2020, 51(1): 130-131.
- [15] 黄昱翰, 蔡泽祥, 潘天亮, 等. 面向闭环运行配电网的 广域保护控制方案[J]. 电力科学与技术学报, 2019, 34(2): 47-52.
 HUANG Yuhan, CAI Zexiang, PAN Tianliang, et al. Wide area protection control scheme for closed-loop operation distribution network[J]. Journal of Electric
- Power Science and Technology, 2019, 34(2): 47-52. [16] 孔祥平, 袁字波, 黄浩声, 等. 光伏电源故障电流的暂 态特征及其影响因素[J]. 电网技术, 2015, 39(9): 2444-2449. KONG Xiangping, YUAN Yubo, HUANG Haosheng, et al. Transient characteristics of photovoltaic power supply fault current and its influencing factors[J]. Power System Technology, 2015, 39(9): 2444-2449.
- [17] HE Jinghan, LIU Lin, DING Fanfan, et al. A new coordinated backup protection scheme for distribution network containing distributed generation[J]. Protection and Control of Modern Power Systems, 2017, 2(1): 102-110. DOI: 10.1186/s41601-017-0043-3.
- [18] 王珊珊, 吕飞鹏, 张国星. 含分布式电源多点接入的 配电网新型纵联保护[J]. 电测与仪表, 2020, 57(4): 49-54, 77.

WANG Shanshan, LÜ Feipeng, ZHANG Guoxing. A new type of vertical protection for distribution network with multi-point access of distributed power supply[J]. Electrical Measurement & Instrumentation, 2020, 57(4):

49-54, 77.

- [19] ALAM M N, GOKARAJU R, CHAKRABARTI S. Protection coordination for networked microgrids using single and dual setting overcurrent relays[J]. The Institution of Engineering and Technology, 2020, 14(14).
- [20] SINGH M, BASAK P. Adaptive protection methodology in microgrid for fault location and nature detection using q0 components of fault current[J]. The Institution of Engineering and Technology, 2019, 13(6).
- [21] AN Wen, MA Junjie, ZHOU Hongyang, et al. An adaptive differential protection and fast auto-closing system for 10 kV distribution networks based on 4G LTE wireless communication[J]. MDPI, 2019, 12(1).
- [22] MAJID N I, PRASETIA H, NOPRIANSYAH A. Mitigation of communication failures on line current differential relays by adding automatic function switching logic to improve protection system reliability, study case in PT PLN (Persero)[C] // 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS), October 1-4, 2019, Denpasar, Indonesia: 227-229.
- [23] 张孟琛, 牛益国, 宣文华. 含 DG 配电网分层分区协同 故障定位隔离技术[J]. 电力系统保护与控制, 2019, 47(23): 115-121.
 ZHANG Mengchen, NIU Yiguo, XUAN Wenhua.
 Layered and partitioned cooperative fault location and isolation technology of distribution network with DG[J].
 Power System Protection and Control, 2019, 47(23): 115-121.
- [24] 谢民, 王同文, 徐靖东, 等. 分布式电源对配网继电保 护影响及综合改进保护方案[J]. 电力系统保护与控制, 2019, 47(19): 78-84.
 XIE Min, WANG Tongwen, XU Jingdong, et al. Influence of distributed power supply on distribution network relay protection and comprehensive improvement protection

scheme[J]. Power System Protection and Control, 2019, 47(19): 78-84. 工理她 欧阳会金 京巫 笠 中國三相短敗玉 DC 告

[25] 王瑞妙,欧阳金鑫,高晋,等. 电网三相短路下 DG 发电短路电流特性分析[J]. 计算机仿真, 2015, 32(10): 140-143, 397.
 WANG Ruimiao, OUYANG Jinxin, GAO Jin, et al.

Analysis of short-circuit current characteristics of DG power generation under three-phase short circuit in power grid[J]. Computer Simulation, 2015, 32(10): 140-143, 397.

- [26] ELMITWALLY A, KANDIL M S, GOUDA E, et al. Mitigation of DGs impact on variable-topology meshed network protection system by optimal fault current limiters considering overcurrent relay coordination[J]. Elsevier BV, 2020, 186.
- [27] 窦小晶, 薛钊, 叶日新, 等. 10 kV 分布式电源并网对 配电网继电保护的影响分析[J]. 智慧电力, 2019, 47(12): 117-122.

DOU Xiaojing, XUE Zhao, YE Rixin, et al. Analysis of the influence of 10 kV distributed power grid connection on relay protection of distribution network[J]. Smart Power, 2019, 47(12): 117-122.

- [28] 林湘宁, 翁汉琍, 吴科成, 等. 小电流接地系统自适应 单相接地保护新原理[J]. 中国电机工程学报, 2006, 26(2): 52-57.
 LIN Xiangning, WENG Hanli, WU Kecheng, et al. New principle of adaptive single-phase grounding protection for small current grounding system[J]. Proceedings of the CSEE, 2006, 26(2): 52-57.
- [29] PRASAD C D, BISWAL M, ABDELAZIZ A Y. Adaptive differential protection scheme for wind farm integrated power network[J]. Electric Power Systems Research, 2020, 187.
- [30] KOUROSH E, MORTEZA B, PARINAZ S. Influence of impressed current cathodic protection systems on chemical characteristics of underground water[J]. Water Environment Research, 2020, 92(12).
- [31] 游颖敏, 王景芹, 舒亮, 等. 断路器保护特性测试电流的自适应控制策略研究[J]. 电工技术学报, 2020, 35(15): 3203-3213.
 YOU Yingmin, WANG Jingqin, SHU Liang, et al. Research on adaptive control strategy of circuit breaker protection characteristic test current[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3203-3213.
- [32] 刘刚,陈莎, 仝进,等. 含分布式电源接入的配电网故 障恢复方法[J]. 电测与仪表, 2020, 57(18): 50-56.
 LIU Gang, CHEN Sha, TONG Jin, et al. Fault recovery method of distribution network with distributed power access[J]. Electrical Measurement & Instrumentation, 2020, 57(18): 50-56.
- [33] 郭晓龙,秦文萍,韩肖清,等. 基于故障后电流相位的 含 DGs 配电网故障快速方向识别算法及 RTDS 仿真验 证[J]. 太阳能学报, 2020, 41(3): 133-139.
 GUO Xiaolong, QIN Wenping, HAN Xiaoqing, et al. Fast direction identification algorithm and RTDS simulation verification for distribution network with DGs based on current phase after fault[J]. Acta Energiae Solaris Sinica, 2020, 41(3): 133-139.

收稿日期: 2020-06-11; 修回日期: 2020-09-13 作者简介:

高生凯(1994—),男,通信作者,硕士研究生,从事光 伏并网及控制方向研究; E-mail: 13853948613@163.com

曹 炜(1963-),女,硕士生导师,副教授,研究方向 为电力系统分析与仿真计算;

张旭航(1962—),男,高级工程师,硕士生导师,研究 方向为电力系统分析与仿真计算。

(编辑 葛艳娜)