李华瑞, 李文博, 李铮, 贾宇乔, 刘全, 缪德炀, 李雅然, 王宝财. 基于生成对抗网络与度量学习的数据驱动频率安全评估[J]. 电力系统保护与控制, 2024, 52(18): 101-111. DOI: 10.19783/j.cnki.pspc.231542
引用本文: 李华瑞, 李文博, 李铮, 贾宇乔, 刘全, 缪德炀, 李雅然, 王宝财. 基于生成对抗网络与度量学习的数据驱动频率安全评估[J]. 电力系统保护与控制, 2024, 52(18): 101-111. DOI: 10.19783/j.cnki.pspc.231542
LI Hua-rui, LI Wen-bo, LI Zheng, JIA Yu-qiao, LIU Quan, MOU De-yang, LI Ya-ran, WANG Bao-cai. Data-driven frequency security assessment based on generative adversarial networks and metric learning[J]. Power System Protection and Control, 2024, 52(18): 101-111. DOI: 10.19783/j.cnki.pspc.231542
Citation: LI Hua-rui, LI Wen-bo, LI Zheng, JIA Yu-qiao, LIU Quan, MOU De-yang, LI Ya-ran, WANG Bao-cai. Data-driven frequency security assessment based on generative adversarial networks and metric learning[J]. Power System Protection and Control, 2024, 52(18): 101-111. DOI: 10.19783/j.cnki.pspc.231542

基于生成对抗网络与度量学习的数据驱动频率安全评估

Data-driven frequency security assessment based on generative adversarial networks and metric learning

  • 摘要: 随着大容量远距离高压直流输电工程的建设和大规模可再生能源的接入,电力系统的频率安全面临严峻挑战。为了对频率安全进行快速准确的在线评估,提出一种基于度量学习与生成对抗网络技术的数据驱动频率安全评估模型。首先,选取关键频率安全指标作为模型输出,并构建输入特征集。然后,使用改进的基于Wasserstein距离度量的生成对抗网络(Wassersteingenerativeadversarialnetwork, WGAN)学习电力系统历史运行场景分布信息,生成覆盖系统典型运行方式的运行场景以构建训练样本集。计及电力系统复杂运行方式下单个机器学习模型对频率安全评估的不适用性,基于核回归度量学习(metric learning for kernel regression, MLKR)算法构建由多个子模型构成的频率安全组合评估模型。最后使用简化的山东电网算例,验证了所提方法的有效性。

     

    Abstract: With the construction of large-capacity long-distance high-voltage direct current transmission projects and the large-scale integration of renewable energy, frequency security of the power system is facing severe challenges. For fast and accurate online assessment of frequency security, a data-driven model based on a metric learning(ML) and generative adversarial network(GAN) is proposed. First, the key frequency security indicators are selected as the outputs of the model,and an input feature set is constructed. Then, the improved Wasserstein generative adversarial network(WGAN) based on the Wasserstein distance metric is used to learn the distribution information of historical operation scenarios of power systems.This generates operational scenarios covering typical modes to build the training sample set. Considering the inapplicability of a single machine learning model to frequency security assessment with complicated operational modes of power systems,a combined assessment model for assessment composed of multiple sub-models is constructed based on metric learning for a kernel regression(MLKR) method. Finally, a simplified Shandong power system example is used to verify the effectiveness of the proposed method.

     

/

返回文章
返回