朱永胜, 常稳, 武东亚, 王耕, 彭圣, 张世博. 考虑充放储一体站与电动汽车互动的主从博弈优化调度策略[J]. 电力系统保护与控制, 2024, 52(7): 157-167. DOI: 10.19783/j.cnki.pspc.231253
引用本文: 朱永胜, 常稳, 武东亚, 王耕, 彭圣, 张世博. 考虑充放储一体站与电动汽车互动的主从博弈优化调度策略[J]. 电力系统保护与控制, 2024, 52(7): 157-167. DOI: 10.19783/j.cnki.pspc.231253
ZHU Yongsheng, CHANG Wen, WU Dongya, WANG Geng, PENG Sheng, ZHANG Shibo. A Stackelberg game optimization scheduling strategy considering the interaction between a charging-discharging-storage integrated station and an electric vehicle[J]. Power System Protection and Control, 2024, 52(7): 157-167. DOI: 10.19783/j.cnki.pspc.231253
Citation: ZHU Yongsheng, CHANG Wen, WU Dongya, WANG Geng, PENG Sheng, ZHANG Shibo. A Stackelberg game optimization scheduling strategy considering the interaction between a charging-discharging-storage integrated station and an electric vehicle[J]. Power System Protection and Control, 2024, 52(7): 157-167. DOI: 10.19783/j.cnki.pspc.231253

考虑充放储一体站与电动汽车互动的主从博弈优化调度策略

A Stackelberg game optimization scheduling strategy considering the interaction between a charging-discharging-storage integrated station and an electric vehicle

  • 摘要: 针对大规模电动汽车(electrical vehicle,EV)接入微电网造成的负荷压力,提出一种考虑充放储一体站(charging-discharging-storage integrated station,CDSIS)与EV互动的主从博弈优化调度策略。首先,通过建立CDSIS模型,并针对CDSIS多场景进行分段设置。其次,建立动态路网模型并结合EV出行特性,预测城市区域路网约束下的EV充电负荷时空分布。并根据预测结果建立EV及CDSIS多目标主从博弈优化调度模型,对EV用户、CDSIS收益进行多目标协调。最后,以某城市主城区域部分交通路网结合IEEE33节点配电系统进行仿真,分析电价与CDSIS储能设备容量对城市区域内EV用户和CDSIS站收益的影响。结果表明,所提主从博弈模型与调度策略能够使得EV用户与CDSIS双方得到最大收益。

     

    Abstract: To address the load pressure caused by the integration of large-scale electric vehicles(EV) into the microgrid,this paper proposes a Stackelberg game optimization scheduling strategy, considering the interaction between a charging-discharging-storage integrated station(CDSIS) and an electric vehicle. First, this paper establishes a model of the CDSIS, and sets up in segments for multiple scenarios of the CDSIS. Secondly, a dynamic road network model is established, and combined with the travel characteristics of the EV, to predict the spatiotemporal distribution of EV charging load under the constraints of an urban regional road network. From the prediction results, a multi-objective Stackelberg game optimization scheduling model is established for the EV and a CDSIS, and the revenue of EV users and CDSIS is harmonized through multi-objective coordination. Finally, a portion of the transportation network in the main urban area of a certain city is simulated in conjunction with the IEEE33 node distribution system. The impact of electricity prices and the capacity of integrated energy storage equipment are analyzed on EV users as is the revenue of integrated CDSIS in urban areas. The results show that the Stackelberg game model and scheduling strategy can maximize the benefits for EV users and the CDSIS.

     

/

返回文章
返回