张延宇, 饶新朋, 周书奎, 周毅. 基于深度强化学习的电动汽车充电调度算法研究进展[J]. 电力系统保护与控制, 2022, 50(16): 179-187. DOI: 10.19783/j.cnki.pspc.211454
引用本文: 张延宇, 饶新朋, 周书奎, 周毅. 基于深度强化学习的电动汽车充电调度算法研究进展[J]. 电力系统保护与控制, 2022, 50(16): 179-187. DOI: 10.19783/j.cnki.pspc.211454
ZHANG Yanyu, RAO Xinpeng, ZHOU Shukui, ZHOU Yi. Research progress of electric vehicle charging scheduling algorithms based on deep reinforcement learning[J]. Power System Protection and Control, 2022, 50(16): 179-187. DOI: 10.19783/j.cnki.pspc.211454
Citation: ZHANG Yanyu, RAO Xinpeng, ZHOU Shukui, ZHOU Yi. Research progress of electric vehicle charging scheduling algorithms based on deep reinforcement learning[J]. Power System Protection and Control, 2022, 50(16): 179-187. DOI: 10.19783/j.cnki.pspc.211454

基于深度强化学习的电动汽车充电调度算法研究进展

Research progress of electric vehicle charging scheduling algorithms based on deep reinforcement learning

  • 摘要: 对电动汽车的充电过程进行优化调度有利于电网安全稳定运行,提升道路通行效率,提高可再生能源利用率,减少用户充电时间和充电费用。深度强化学习可以有效解决电动汽车充电优化调度面临的随机性和不确定性因素的影响。首先,概述了深度强化学习的工作原理,对比分析了不同种类强化学习的特点和应用场合。然后,从静态充电调度和动态充电调度两方面综述了基于深度强化学习的电动汽车充电调度算法研究成果,分析了现有研究的不足。最后,展望了该领域未来的研究方向。

     

    Abstract: Optimal scheduling of the electric vehicle charging process is beneficial to the safe and stable operation of power grids. It improves road traffic efficiency, facilitates renewable energy utilization, and reduces the charging time and costs for users. Deep reinforcement learning can effectively solve the problems caused by different randomness and uncertainty in the optimal charging scheduling. This paper summarizes the working principle of deep reinforcement learning first, and makes the comparison of the characteristics and applications among different types of reinforcement learning. Then, the research results of deep reinforcement learning for EV charging scheduling are summarized in terms of both static and dynamic charging scheduling, and the shortcomings of existing research are analyzed. Finally, future research directions are discussed.

     

/

返回文章
返回