基于EWT-MQE的变压器局部放电特征提取
Partial discharge feature extraction of a transformer based on EWT-MQE
-
摘要: 为了有效提取局部放电信号故障特征,进而对电力变压器故障进行诊断,提出一种基于经验小波变换(Empirical Wavelet Transform, EWT)和多尺度量子熵(Multiscale Quantum Entropy, MQE)的变压器局部放电特征提取方法。首先,该方法利用EWT对局部放电信号进行分解,得到多个不同的固有模态分量(Intrinsic Mode Function,IMF)和残余分量。其次,计算信号分解出的每个IMF的多尺度量子熵序列。然后,对多尺度量子熵序列利用局部切空间排列算法(Local Tangent Space Arrangement,LTSA)进行降维处理。最后,采用层次聚类算法(Hierarchical Agglomerative Clustering, HAC)进行聚类分析,得到不同放电类型的识别结果。通过与不同诊断方法对比,仿真结果及实验数据验证了所提方法的有效性和优越性。Abstract: To effectively extract the partial discharge fault feature and diagnose the fault of a power transformer, this paper presents a method based on empirical wavelet transform(EWT) and multiscale quantum entropy(MQE) to diagnose transformer faults. First, EWT is employed for partial discharge signal decomposition to get different IMF components and a residual. Secondly, the MQE sequence of each IMF is generated by signal decomposition. Then the dimension of the MQE sequence is reduced with the local tangent space arrangement algorithm(LTSA). Finally, a hierarchical clustering algorithm(HAC) is used for clustering analysis to get the recognition results of different types of discharge. Compared with different diagnostic methods, the effectiveness and superiority of the proposed method is verified by the simulation result and experimental data.