基于XGBoost的配电网线路峰值负荷预测方法
Peak load forecasting method of distribution network lines based on XGBoost
-
摘要: 为实现电网平稳迎峰度夏,需要在夏季负荷高峰前提前1~2个月对配电网线路进行峰值负荷预测,为设备部门有计划地制订和实施增容和改扩建方案提供数据支撑。提出一种基于XGBoost的配电网线路峰值负荷预测方法。该方法综合考虑气象因素、时间因素、春季基础负荷因素,分析各类因素与夏季负荷高峰的相关性,确定预测样本特征值。通过K-means算法对线路负荷增长趋势进行聚类分析,筛选出未来可能负荷较重的目标线路,进而使用XGBoost算法进行线路峰值负荷预测。使用所提方法对某实际城区局部配网进行预测,算例结果验证了该算法的预测准确性。与其他算法的对比结果体现了该算法计算规模小、预测速度快的优点。Abstract: To enable the power grid to smoothly pass through the summer load peak, it is necessary to predict the peak load of distribution network lines 1-2 months in advance before the summer load peak. This provides data support for the equipment department to develop and implement capacity expansion and reconstruction projects in a planned manner. This paper proposes a distribution network line peak load forecasting method based on XGBoost. The method comprehensively considers various factors including meteorological, time and spring load factors, and analyzes the correlation coefficients between summer load and various factors, and accordingly determines the eigenvalues of prediction samples. The K-means algorithm is used to cluster the line load growth trends to identify the target lines with heavy load in the future. The XGBoost algorithm is used to predict the peak load of the lines. The predice results on an actual urban distribution network verify the prediction accuracy of method. Comparisons with other methods demonstrate that the proposed method has the advantages of smaller computation scale and faster prediction speed.