田书欣, 刘浪, 魏书荣, 符杨, 米阳, 刘舒. 基于改进灰狼优化算法的配电网动态重构[J]. 电力系统保护与控制, 2021, 49(16): 1-11. DOI: 10.19783/j.cnki.pspc.201356
引用本文: 田书欣, 刘浪, 魏书荣, 符杨, 米阳, 刘舒. 基于改进灰狼优化算法的配电网动态重构[J]. 电力系统保护与控制, 2021, 49(16): 1-11. DOI: 10.19783/j.cnki.pspc.201356
TIAN Shuxin, LIU Lang, WEI Shurong, FU Yang, MI Yang, LIU Shu. Dynamic reconfiguration of a distribution network based on an improved grey wolf optimization algorithm[J]. Power System Protection and Control, 2021, 49(16): 1-11. DOI: 10.19783/j.cnki.pspc.201356
Citation: TIAN Shuxin, LIU Lang, WEI Shurong, FU Yang, MI Yang, LIU Shu. Dynamic reconfiguration of a distribution network based on an improved grey wolf optimization algorithm[J]. Power System Protection and Control, 2021, 49(16): 1-11. DOI: 10.19783/j.cnki.pspc.201356

基于改进灰狼优化算法的配电网动态重构

Dynamic reconfiguration of a distribution network based on an improved grey wolf optimization algorithm

  • 摘要: 为了更好地解决含分布式电源(DistributedGeneration, DG)的配电网重构问题,建立了考虑负荷需求与DG出力时变特性的配电网动态重构模型。首先采用K-means++聚类算法对日负荷进行时段划分。然后以系统损耗、电压偏离量为目标函数,并利用改进灰狼优化算法进行寻优计算。针对传统灰狼优化算法中存在的初始种群分布不均、缺少全局交流、容易陷入局部最优等问题,在生成初始种群时引入tent映射,增强初始种群的均匀性。引入合作竞争机制,提高个体间有效信息的利用率。在灰狼种群位置更新时引入自适应惯性权值,以满足不同时期的寻优要求。最后通过算例分析,验证了该算法的可行性与优越性。

     

    Abstract: To improve distribution network reconfiguration with Distributed Generation(DG), a dynamic distribution network reconfiguration model considering time-varying characteristics of DG output and load demand is established. First, the K-means++ clustering algorithm is used to divide the daily load period. Then, the system loss and voltage deviation are taken as the objective functions, and the improved grey wolf optimization algorithm is used to optimize the calculation. To tackle uneven initial population distribution, lack of global communication and ‘easy to fall into local optima’ in traditional grey wolf optimization algorithms, when generating the initial population, it introduces tent mapping to enhance the uniformity of the initial population. A cooperative competition mechanism is introduced to improve the utilization rate of effective information between individuals. An adaptive inertia weight is introduced when the grey wolf population position is updated to meet the optimization requirements of different periods. Finally, the feasibility and superiority of the proposed algorithm are verified by a numerical example.

     

/

返回文章
返回