中图分类号: TM615

doi: 10.3969/j.ISSN.1672-0792.2023.02.002

基于事件触发驱动的最大功率点跟踪及电压 稳定控制

谢周腾,刘斌,刘永忠

(湖南工业大学 电气与信息工程学院, 湖南 株洲 412007)

摘 要:针对独立光储微电网电压波动较大、功率不稳定以及光照环境的改变会对负载端电压 造成影响的问题,首先根据事件触发驱动策略构建了独立光储微电网系统结构,并设计了事件 触发驱动协议;然后基于事件触发改进了扰动观察(Perturbation and observation, P&O)法。 在光伏发电系统中,采用基于改进 P&O 法实现了最大功率点追踪控制,使系统保持稳定在最 大功率运行。针对光照时变环境下导致的负载端电压偏差过大问题,提出在系统中加入基于事 件触发驱动策略控制的储能装置,通过与发电系统进行能量互补实现负载端电压稳定控制。最 后通过仿真实验验证了所用方法及所提控制策略的有效性与正确性。 关键词:微电网;电力系统稳定;最大功率点追踪;扰动观察法;事件触发驱动

Maximum Power Point Tracking and Voltage Stability Control

文章编号: 1672-0792(2023)02-0008-06

文献标识码: A

Based on Event-triggered Drive

XIE Zhouteng, LIU Bin, LIU Yongzhong

(College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China)

Abstract: Aiming at the problem that the independent optical storage microgrid has large voltage fluctuation, power instability and the change of illumination environment will affect the load terminal voltage, the structure diagram of the independent optical storage microgrid system is constructed according to the event-triggered driving strategy, and the event-triggered driving protocol is designed. Then the perturbation and observation (P&O) method is improved based on event triggering. In the photovoltaic power generation system, the maximum power point tracking control is realized based on the improved P&O method, so that the system can maintain stable operation at maximum power operation. Aiming at the problem of excessive load terminal voltage deviation caused by time-varying illumination environment, an energy storage device based on event-triggered drive strategy control is proposed to be added to the system, and the load terminal voltage stability control is realized by energy complementation with the power generation system. Finally, the effectiveness and correctness of the proposed method and control strategy are verified by simulation experiments.

Key words: microgrid; power system stability; maximum power point tracking; disturbance observation method; event trigger driver

基金项目:国家自然科学基金(62073132);湖南省研究生科研创新资助(CX20220830)。

0 引言

随着"碳达峰""碳中和"的提出,我国开 始建设以可再生能源为主导、其他能源为补充的能 源体系,分布式能源的利用率逐渐增高,"绿色房 屋"——房屋分布式光伏发电工程被积极推进。

由于光伏发电具有不确定性和间歇性,光伏 发电系统在运行过程中会出现能量利用率过低、 电压波动、电压偏差过大等问题。这些问题会对 负载造成一定的影响。光伏发电系统通常采用最 大功率点追踪(Maximum power point tracking, MPPT)来解决利用率过低的问题,并引入外部条 件来调节电压,防止电压波动过大。

在 MPPT 算法方面, 扰动观察法、恒电压法、 电量增导法等传统控制算法^[1]以及天牛群优化算 法^[2]、灰狼优化算法^[3]等智能控制算法都能够有效 地使光伏发电系统工作在最大功率附近。文献[4] 为抑制光伏发电的波动性,采用改进的扰动观察 法, 并提出了一种模式切换协调控制策略。文 献[5]提出一种基于不确定性推理的扰动观察法, 并引入光照、温度的变化率来修正步长,实现了 MPPT。文献[6]将几种传统算法相结合并进行了改 进; 仿真结果表明所改方法在减少追踪时间的同 时,也减小了功率的振荡。文献[7]将传统扰动观察 法与神经网络法相结合, 结果表明该控制方法在一 定程度上能加快动态调节速度并减小稳态误差。

在减小负载端电压波动方面, 文献[8]利用蓄 电池对负载端电压进行调节。文献[9]提出一种恒 功率控制策略,并在光伏发电逆变之前采取 MPPT 及稳压控制。上述文献都采用了基于改进算法的 MPPT,提高了光伏发电的利用率,减小了功率和 电压的波动,但是仍然存在最大功率点附近功率 振荡以及步长固定导致追踪精度下降的问题, 或 未考虑到光照变化对负载端电压的影响。

鉴于此,本文首先构建了独立光储微电网系 统结构并设计了事件触发驱动协议;然后基于事 件触发改进了 P&O 算法,并将改进算法的 MPPT 与传统算法的 MPPT 进行对比;考虑到实际情况 下光照环境的改变导致负载端电压波动的问题, 引入了基于事件触发驱动协议控制的储能装置, 对系统的电压进行稳定控制。

1 事件触发驱动策略与协议设计

事件驱动策略是指在持续运行或者持续事务 管理的过程中进行决策的一种控制策略^[10],其思 想是针对实时问题,通过调动可用资源,并执行 相应的操作,使问题得到解决。

本文根据事件触发驱动策略构建了如图 1 所 示的独立光储微电网系统结构,并设计了事件驱 动协议。

图1 独立光储发电系统结构图

Fig. 1 Structure diagram of stand-alone optical storage power generation system

图 1 中: DC/DC 变换单元采用的是 Boost 升 压电路,对光伏发电系统进行 MPPT 控制,使系 统能够工作在最大功率点;储能装置采用超级电 容^[11]或蓄电池等一些储存能源的器件。

基于图1系统结构图以及事件触发驱动策略, 对传统 P&O 算法进行了改进并设计出3 层事件触 发驱动装置,去控制储能装置。事件触发驱动协 议具体如表1 所示。

表1 3 层事件触发驱动协议

Tab. 1	Three layer	event trigger	driver protocol
--------	-------------	---------------	-----------------

事件类型	定义	电池状态
电压过高	$lpha \ge heta_{ m max}$	充电
电压适中	$ heta_{\min}\!\leqslant\!\alpha\!\leqslant\! heta_{\max}$	不工作
电压过低	$lpha \leq heta_{\min}$	放电

表 1 中: α 为负载两端 *t* 时刻的电压 U_t 与参 考值 U_{ref} 的比值。 θ_{max} 、 θ_{min} 分别为触发常数的 上限与下限,且 $\theta_{max} > \theta_{min}$, $\theta_{max} > 1$, 0 < $\theta_{min} < 1$ 。

触发常数的上、下限,即为电池充放电的开 关阈值。我国工业用电的标准电压波动范围为 -7%~+7%,因此本文将触发常数下、上限设为-5% 与+5%。当 $\alpha \ge \theta_{max}$ 时,负载两端电压大于所设 定的电压范围,需对负载供电的同时对电池进行 充电。当 $\alpha \le \theta_{min}$ 时,表示负载端电压供电不足, 需电池对负载进行供电补偿。

2 事件触发驱动在 MPPT 上的应用

2.1 传统 P&O 算法工作原理

传统 P&O 法 MPPT 的基本工作原理是:每隔 一定的时间,增加或者减少光伏阵列的输出电压, 扰动其工作点,并通过观测扰动之后输出功率变 化来判断下一步工作点的扰动方向,直至光伏阵 列工作在最大功率点处。本文采用基于占空比的 MPPT 控制,具体算法原理如图 2 所示。

Fig. 2 Schematic diagram of MPPT control based on duty cycle

传统 P&O 法 MPPT 的基本计算原理为:

$$U_T = U_{T-1} \pm U_{\Delta T} =$$

 $U_{T-1} + [U_T - U_{T-1}] \operatorname{sign}(P_T - P_{T-1}) \quad (1)$

式中: U_T 为 T 次步长时刻系统的电压; U_{T-1} 为 T 次步长时刻前一个步长时刻的电压; $U_{\Delta T}$ 为每一次的增加或减小的值,即扰动量; P_T 为 T次步长时刻系统的功率。算法的计算流程图如图 3 所示。

图 3 传统 P&O 法 MPPT 控制流程图

在用传统 P&O 法进行 MPPT 控制过程中:在 每个控制周期,采用固定的步长来改变系统的输 出电压;通过判断前一个步长 *T*-1 时刻的功率与 *T*时刻功率的功率差 Δ*P*来决定下一个周期的扰动 方向^[12]。

Δ*P*>0 表示上一步长周期扰动方向正确,下一 步长周期的扰动方向将保持不变; Δ*P*<0 表示上一 周期的扰动方向错误,下一周期的扰动方向应与 上一周期的扰动方向相反。经多次扰动之后,若 Δ*P*=0,则说明系统已经到达最大功率点。在用传 统 P&O 法进行 MPPT 控制过程中,由于步长固定 的原因,算法会持续不断地施加扰动,从而导致 系统的功率曲线在最大功率点附近振荡,造成一 定的功率损失。

2.2 基于事件触发驱动 P&O 算法的 MPPT 控制

为确保 MPPT 的时效性以及准确性,本文基于事件触发驱动对传统 P&O 法进行了改进^[13],原

理如下。

当检测到系统电压超过 0.7 倍参考电压时,第 一层事件触发,开始施加 MPPT 控制。这样,可 以在一定程度上减少追踪时间。

当系统运行开始时,若系统功率差与电压差 之比 Δ*P*/Δ*V* 大于一个常数 *K*,则第二层事件触发。 此时,选择固定的大步长,加快追踪速度。

当系统功率接近最大功率点时,即当 Δ*P*/Δ*V* 小于 *K* 时,第三层事件触发。此时选择自适应步 长,以提高追踪精度,避免产生功率振荡。

具体工作原理如图4所示。

改进后 MPPT 计算方式为:

$$d_T = d_{T-1} \pm d_{\Delta T} = d_{T-1} \pm d_{\text{step}} \qquad (2)$$

$$d_{\text{step}} = \begin{cases} \beta, \ \frac{\Delta P}{\Delta V} > K \\ \gamma \frac{\Delta P}{\Delta V} d_{\text{step}}, \ \frac{\Delta P}{\Delta V} < K \end{cases}$$
(3)

$$\frac{\Delta P}{\Delta V} = \frac{P_T - P_{T-1}}{V_T - V_{T-1}} \tag{4}$$

$$K = 0.31S \tag{5}$$

式中: β 、 γ 、K、S均为大于 0 的常数。

ΔP/ΔV 为特性曲线斜率;常数 K 为事件触发 阈值。分析不同光照强度下的光伏 P-V 特性曲线 可知,曲线斜率与光照强度 S 成正比,且接近最 大功率点的曲线斜率相较远离最大功率点的曲线 斜率要小。

改进后,算法流程如图5所示。

Fig. 5 MPPT control flow chart of improved P&O algorithm

2.3 均匀与突变的光照环境下仿真结果

本文使用 MATLAB 软件中的 Simulink 搭建 仿真平台。光伏阵列采用了 Simulink 中的 PV array 模块。系统及模块具体参数如表 2 所示。

表 2 系统模块参数数值

Tab. 2 Numerical table of system module parameters

参数名称	数值
光伏阵列开路电压 Voc	36.3 V
光伏阵列短路电流 Isc	7.84 A
光伏阵列最大功率点电压 Vmp	29 V
光伏阵列最大功率点电流 Imp	7.35 A
光伏阵列串联数量 Ns	10
光伏阵列并联数量 N _p	40
参考电压 U _{ref}	300 V
触发常数上限 θ_{max}	1.05
触发常数下限 θ_{min}	0.95
β	0.001
γ	0.005
$K (1 000 \text{ W/m}^2)$	310
$K (800 \text{ W/m}^2)$	248
储能装置(SOC)初始值	50%

仿真过程:温度设定为 25 ℃。在 0~0.5 s,光 照强度为 1 000 W/m²;在 0.5 s 时,光照强度突变 为 800 W/m²。仿真结果如图 6 所示。

Fig. 6 Comparison of MPPT simulation results between traditional algorithm and improved algorithm

从图 6 中可看出,本文提出的算法比传统 P&O 法 MPPT 控制算法能够在光照突变时更快地 追踪到最大功率点,并保持在最大功率点运行, 减少了功率的振荡损耗。

3 基于事件触发的电压稳定控制

针对光照突变会导致系统功率输出不稳定的 问题,本节引入基于事件触发驱动策略控制的储 能装置来对负载端电压进行稳定控制^[14]。

仿真条件:将光照强度从 1 000 W/m² 改成随 时间变化;事件触发常数 K=0.31。具体的光照强 度时变过程如图 7 所示。

图 7 光照强度时变图

Fig. 7 Time-varying diagram of light intensity

随着光照强度的改变,系统电压也会随着改 变。为了保证对负载端电压的稳定控制、事件触 发驱动策略的灵活性,同时考虑负载端不能长时 间处于过压或低压状态下,因此要求负载端的电 压要稳定在 0.93~1.07 倍参考电压 U_{ref}之间,称该 区域为安全区域^[15]内。

具体的仿真结果如图 8 所示。

从图 8 中可以看出:在 0.02~0.8 s、1.3~1.8 s、 3.4 s~4.2 s 这 3 个时间段,未加储能装置的负载电 压明显已经超过了安全区域,加入储能装置后,负 载电压已回到安全区域内。为了能够看出发电系统 与储能装置的能源互补情况,本文采用了 Simulink 中 Scope 模块对储能装置内的电池荷电状态 (State of charge, SOC)进行了监测,结果如图 9 所示。

图 9 中 SOC 曲线的运动趋势代表着电池不同 的工作状态。对比图 8 发现,当电池 SOC 曲线上 升时,光伏发电系统同时给储能装置充电及负载 供电。当电池 SOC 曲线不变时,负载端电压全部 由光伏发电系统提供。当电池 SOC 曲线下降时,负 载端电压由光伏发电系统以及储能装置共同提供。

4 结论

针对独立光储微电网在光照时变环境下出现 的电压波动较大、功率不稳定等问题,本文提出 一种基于改进 P&O 算法的 MPPT 控制策略,然后 通过事件触发驱动装置控制储能系统来提高系统 的能源利用率与稳定安全性。结果表明:

(1)提出的改进 P&O 算法的 MPPT 控制策 略在光照突变时也能够快速准确地追踪到系统最 大功率点;

(2) 在提出的控制策略的基于事件触发驱动 的储能装置的共同作用下,发电系统的电压稳定 性在光变环境下有所提高。

参考文献:

- 花赟昊,朱武,郭启明. 光伏发电系统 MPPT 算法研 究综述[J]. 电源技术, 2020, 44(12): 1855-1858.
 HUA YUNHAO, ZHU WU, GUO QIMING. Review of MPPT algorithm of photovoltaic power generation system[J]. Chinese Journal of Power Sources, 2020, 44(12): 1855-1858(in Chinese).
- [2] 赵帅旗,肖辉,刘忠兵,等. 基于 BSO 的局部阴影下 光伏最大功率点追踪[J]. 电力系统及其自动化学报, 2020, 32(6): 74-79.
 ZHAO SHUAIQI, XIAO HUI, LIU ZHONGBING, et al.

Photovoltaic maximum power point tracking based on BSO algorithm under partial shading condition[J]. Proceedings of the CSU-EPSA, 2020, 32(6): 74-79(in Chinese).

- [3] ELTAMALY A M, FARH H M H. Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC[J]. Solar Energy, 2019, 177: 306-316.
- [4] 卢锦玲,张伟,张祥国,等. 含混合储能的光伏微电 网系统协调控制策略[J]. 电力系统及其自动化学报, 2021, 33(8): 102-108.
 LU JINLING, ZHANG WEI, ZHANG XIANGGUO, et al. Coordinated control strategy for photovoltaic micr-ogrid system with hybrid energy-storage[J]. Proceedings of the CSU-EPSA, 2021, 33(8): 102-108(in Chinese).
- [5] 艾永乐,刘群峰,韩朝阳,等.基于改进扰动观察法的光伏 MPPT 策略[J]. 武汉大学学报(工学版), 2020, 53(4): 339-344.

AI YONGLE, LIU QUNFENG, HAN CHAOYANG, et al. Photovoltaic MPPT strategy based on improved perturbation and observation method[J]. Engineering Journal of Wuhan University, 2020, 53(4): 339-344(in Chinese).

- [6] 郭昆丽, 闫东, 付建哲. 基于改进扰动观察法的光伏 系统 MPPT 研究[J]. 电源技术, 2021, 45(1): 56-59. GUO KUNLI, YAN DONG, FU JIANZHE, et al. MPPT research of photovoltaic system based on improved perturbation and observation method[J]. Chinese Journal of Power Sources, 2021, 45(1): 56-59(in Chinese).
- [7] 易磊,谢雨龙,曾凡炎,等.基于神经网络的改进扰动 观察法MPPT控制[J].太阳能学报,2022,43(4):198-203.
 YI LEI, XIE YULONG, ZENG FANYAN, et al. Improved perturbation observation method MPPT control based on neural network[J]. Acta Energiae Solaris Sinica, 2022, 43(4): 198-203(in Chinese).
- [8] 李俊, 刘斌. 基于事件驱动的光伏发电系统电压稳定 控制[J]. 湖南工业大学学报, 2018, 32(4): 33-39.
 LI JUN, LIU BIN. Voltage stability control of event-driven photovoltaic system[J]. Journal of Hunan University of Technology, 2018, 32(4): 33-39(in Chinese).
- [9] 徐玉琴, 方楠. 基于稳压控制的独立光储微电网控制 策略研究及仿真分析[J]. 电力系统保护与控制, 2020, 48(21): 67-74.
 XU YUQIN, FANG NAN. Control strategy research and simulation analysis of an independent optical storage microgrid based on voltage stabilizing control[J]. Power System Protection and Control, 2020, 48(21): 67-74(in Chinese).
- [10] ZHAO L, MA X, WANG J. Networked predictive control for linear systems with quantizers by an event-driven strategy[J]. Journal of the Franklin Institute, 2019, 356(6): 3245-3269.
- [11] HUANG J, BAI Z. Research on wireless charging intelligent car based on super capacitor[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1574(1): 012153.
- [12] SURESH A, RESMI R. A competitive study on MPPT techniques employed in solar PV systems[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 2070(1): 012084.
- [13] SAAD W, HEGAZY E, SHOKAIR M. Maximum power point tracking based on modified firefly scheme for PV system[J]. SN Applied Sciences, 2022, 4(4): 1-15.
- [14] LIANG X, CHAI H, RAVISHANKAR J. Analytical methods of voltage stability in renewable dominated power systems: a review[J]. Electricity, 2022, 3(1): 75-107.
- [15] RABIEE A, KAMWA I, KEANE A, et al. Gas network's impact on power system voltage security[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5428-5440.

收稿日期: 2022-10-10

作者简介:

谢周腾(1999—),男,硕士研究生,研究方向为微 电网电压稳定与运行控制;

刘 斌(1966—),男,教授,研究方向为微电网与 混合网络的稳定性与分布式控制;

刘永忠(1998—),男,硕士研究生,研究方向为微 电网电压稳定与运行控制。

通信作者:谢周腾