马良玉, 段晓冲, 胡景琛, 黄日灏, 程泽龙, 段新会. 基于特征分解与Bi-LSTM-Attention模型的风向预测[J]. 电力科学与工程, 2024, 40(8): 63-69.
引用本文: 马良玉, 段晓冲, 胡景琛, 黄日灏, 程泽龙, 段新会. 基于特征分解与Bi-LSTM-Attention模型的风向预测[J]. 电力科学与工程, 2024, 40(8): 63-69.
MA Liangyu, DUAN Xiaochong, HU Jingchen, HUANG Rihao, CHENG Zelong, DUAN Xinhui. Wind Direction Prediction Based on Feature Decomposition and Bi-LSTM-Attention Model[J]. Electric Power Science and Engineering, 2024, 40(8): 63-69.
Citation: MA Liangyu, DUAN Xiaochong, HU Jingchen, HUANG Rihao, CHENG Zelong, DUAN Xinhui. Wind Direction Prediction Based on Feature Decomposition and Bi-LSTM-Attention Model[J]. Electric Power Science and Engineering, 2024, 40(8): 63-69.

基于特征分解与Bi-LSTM-Attention模型的风向预测

Wind Direction Prediction Based on Feature Decomposition and Bi-LSTM-Attention Model

  • 摘要: 为便于精准控制风电机组的偏航角度、充分利用风能提高机组发电量,提出一种基于历史数据深度学习的风向超短期预测方法。首先利用变分模态分解将风向数据分解成多个子序列,考虑分解后的残差分量仍保留大量信号特征,进一步采用自适应噪声完备集合经验模态分解方法对残差分量进行二次分解。在此基础上,结合风速、环境温度等特征,利用具有注意力机制的双向长短期记忆网络对风向进行超短期预测。采用河北某风电场SCADA真实数据,对风向进行5 min的超短期预测实验,并与其他方法进行对比,结果表明所提方法具有更好的风向预测效果。

     

    Abstract: In order to accurately control the yaw angle of the wind turbine and fully utilize wind energy to increase the power generation of the unit, a deep learning based wind direction ultra-short-term prediction method based on historical data is proposed. Firstly, variational modal decomposition(VMD)is used to decompose wind direction data into multiple subsequences. Considering that the residual component after decomposition still retains a large number of signal features, adaptive noise complete set empirical mode decomposition(CEEMDAN) is further used to perform secondary decomposition for the residual component. On this basis, combined with features such as wind speed and environmental temperature, a bidirectional long short-term memory network with attention mechanism(Bi-LSTM-Attention) is used to predict wind direction in ultra-short-term. Using real SCADA data from a wind farm in Hebei, 5-minute wind direction prediction experiments are conducted, and compared with other methods, the results show that better prediction performance can be got with the proposed method.

     

/

返回文章
返回