赵雅丽, 郭鹏, 胡乾坤, 董科韬. 基于云模型的风电机组出力异常监测方法[J]. 电力科学与工程, 2024, 40(8): 70-78.
引用本文: 赵雅丽, 郭鹏, 胡乾坤, 董科韬. 基于云模型的风电机组出力异常监测方法[J]. 电力科学与工程, 2024, 40(8): 70-78.
ZHAO Yali, GUO Peng, HU Qiankun, DONG Ketao. Wind Turbine Abnormal Monitoring Method Based on Cloud Model[J]. Electric Power Science and Engineering, 2024, 40(8): 70-78.
Citation: ZHAO Yali, GUO Peng, HU Qiankun, DONG Ketao. Wind Turbine Abnormal Monitoring Method Based on Cloud Model[J]. Electric Power Science and Engineering, 2024, 40(8): 70-78.

基于云模型的风电机组出力异常监测方法

Wind Turbine Abnormal Monitoring Method Based on Cloud Model

  • 摘要: 实时监测风电机组出力情况、及时发现机组问题,能够最大程度保障风电场经济效益。采用自适应Density-based spatial clustering of applications with noise(DBSCAN)算法提取风电机组正常状态下在风速–功率(v-P)坐标系中建立性能模型所需的数据。在监测阶段,在划分水平功率区间后利用马氏距离衡量监测数据与性能模型间残差,并将采用滑动窗口方法连续获取的残差子序列送入云模型进行模糊化评估,得出风电机组运行状态。结果云的变化表明,基于云模型的异常监测方法能真实客观反映机组运行状态,可为机组维护工作提供有效指导和建议。

     

    Abstract: Real-time monitoring of wind turbine output and timely detection of the unit problems can maximize the economic benefits of wind farms. Using adaptive Density-Based Spatial Clustering of Applications with Noise(DBSCAN) algorithm to extract the datas required to establish the performance model of wind turbines under normal conditions in a wind speed-power(v-P) coordinate system. In the monitoring phase, after dividing horizontal power intervals, Mahalanobis distance is used to measure residual errors between the monitoring data and the performance model, and the sliding window method is used to continuously obtain the residual sequence into cloud model for fuzzy evaluation, obtaining the operating status of wind turbines. The changes in clouds show that the anomaly monitoring method based on cloud models can accurately and objectively reflect the operating status of the unit, providing effective guidances and suggestions for maintenance work.

     

/

返回文章
返回