邓鹏, 刘敏, 曹鹏, 陈名扬. 基于改进启发式算法的配电网随机潮流重构研究[J]. 电力科学与工程, 2021, 37(8): 33-40.
引用本文: 邓鹏, 刘敏, 曹鹏, 陈名扬. 基于改进启发式算法的配电网随机潮流重构研究[J]. 电力科学与工程, 2021, 37(8): 33-40.
DENG Peng, LIU Min, CAO Peng, CHEN Ming-yang. Research on Probabilistic Power Flow Reconfiguration of Distribution Network Based on Improved Heuristic Algorithm[J]. Electric Power Science and Engineering, 2021, 37(8): 33-40.
Citation: DENG Peng, LIU Min, CAO Peng, CHEN Ming-yang. Research on Probabilistic Power Flow Reconfiguration of Distribution Network Based on Improved Heuristic Algorithm[J]. Electric Power Science and Engineering, 2021, 37(8): 33-40.

基于改进启发式算法的配电网随机潮流重构研究

Research on Probabilistic Power Flow Reconfiguration of Distribution Network Based on Improved Heuristic Algorithm

  • 摘要: 配电网重构(distribution network reconfiguration,DNR)是确定配电网最优拓扑及减少网络损耗的有效措施。由于分布式电源(distributed generation,DG)和电动汽车(electric vehicle,EV)的大量接入导致了配电网潮流具有随机性,传统的重构方法已不能快速准确地得到随机潮流的重构最优解。提出一种考虑分布式电源和电动汽车的随机性和不确定性,以减少网络损耗和提高电压质量为目标的配电网重构模型,并采用启发式算法中的最优模式法(optimal power flow,OPF)和支路交换法(branch exchange method,BEM)加快重构速度。通过IEEE136测试系统验证该算法的有效性和正确性,结果表明:该算法实现了深度优化,能有效地解决随机潮流动态重构问题。

     

    Abstract: Distribution Network Reconfiguration(DNR) is an effective measure to determine the optimal topology of the distribution network and reduce network losses. Due to the massive access of distributed generation(DG) and electric vehicles(EV), the power flow of the distribution network is probabilistic.The traditional reconstruction method can no longer quickly and accurately obtain the reconstruction optimal solution of probabilistic power flow. Proposes a reconstruction model that considers the randomness and uncertainty of distributed generation and electric vehicles, aims to reduce network losses and improve voltage quality, and adopts optimal power flow(OPF) and branch exchange method(BEM)in the heuristic algorithm to speed up reconstruction. The validity and correctness of the algorithm are verified by the IEEE136 test system. The results show that this algorithm achieves deep optimization and can effectively solve the problem of dynamic reconstruction of probabilistic power flow.

     

/

返回文章
返回