杨用春, 杨林. 基于改进PFCM算法的多重耦合电能质量扰动识别分析[J]. 电力科学与工程, 2024, 40(8): 1-9.
引用本文: 杨用春, 杨林. 基于改进PFCM算法的多重耦合电能质量扰动识别分析[J]. 电力科学与工程, 2024, 40(8): 1-9.
YANG Yongchun, YANG Lin. Identification and Analysis of Multi-Coupled Power Quality Disturbances Based on Improved PFCM Algorithm[J]. Electric Power Science and Engineering, 2024, 40(8): 1-9.
Citation: YANG Yongchun, YANG Lin. Identification and Analysis of Multi-Coupled Power Quality Disturbances Based on Improved PFCM Algorithm[J]. Electric Power Science and Engineering, 2024, 40(8): 1-9.

基于改进PFCM算法的多重耦合电能质量扰动识别分析

Identification and Analysis of Multi-Coupled Power Quality Disturbances Based on Improved PFCM Algorithm

  • 摘要: 非线性负荷、电力电子设备以及网络因素的复杂交互导致了电能质量问题的多样化及相互耦合。电力用户生产的多种运行方式,进一步增加了电能质量的不确定性,使其呈现出概率性分布。鉴于传统统计学方法在处理分析大规模电能质量数据时的局限性,提出了一种改进的可能模糊C均值(Possible fuzzy C-means, PFCM)聚类算法,并通过引入协方差矩阵和熵权法对原始数据进行预处理,有效提高了聚类分析的准确性和鲁棒性。首先针对改进的IEEE33节点系统进行仿真建模,并基于场景的方式生成得到电能质量特征数据;随后通过3种不同的算法挖掘出网络电能质量分布特征信息;最后通过对比3种算法的识别结果,验证了改进PFCM算法在电能质量扰动识别方面的有效性和优越性。

     

    Abstract: The complex interaction of nonlinear loads, power electronic equipment and network factors have led to a diversification and mutual coupling of power quality issues. The various operating modes of power users further increase the uncertainty of power quality, presenting it with a probabilistic distribution. In the light of the limitations of traditional statistical methods in processing and analysing large-scale power quality data, an improved Possible fuzzy C-means(PFCM) clustering algorithm is proposed, and by introducing the covariance matrix and entropy weight method for preprocessing of original data, the accuracy and robustness of clustering analysis are effectively improved. Firstly, build a simulation model for the improved IEEE 33-node system and generate power quality characteristic data in a scenario-based manner. Then the distribution characteristic information of power quality in the power grid is excavated through three different algorithms. Finally, by comparing the identification results of the three algorithms, the effectiveness and superiority of the improved PFCM algorithm in the identification of power quality disturbances are verified.

     

/

返回文章
返回