倪依柯, 李红智, 张一帆, 杨玉, 吴帅帅, 姚明宇. 铅铋快堆-超临界CO2循环系统中铅铋/超临界CO2换热研究综述[J]. 电力科技与环保, 2023, 39(6): 471-483.
引用本文: 倪依柯, 李红智, 张一帆, 杨玉, 吴帅帅, 姚明宇. 铅铋快堆-超临界CO2循环系统中铅铋/超临界CO2换热研究综述[J]. 电力科技与环保, 2023, 39(6): 471-483.
NI Yike, LI Hongzhi, ZHANG Yifan, YANG Yu, WU Shuaishuai, YAO Mingyu. A review of lead-bismuth supercritical CO2heat transfer in lead-bismuth fast reactor-supercritical CO2cycle system[J]. Electric Power Technology and Environmental Protection, 2023, 39(6): 471-483.
Citation: NI Yike, LI Hongzhi, ZHANG Yifan, YANG Yu, WU Shuaishuai, YAO Mingyu. A review of lead-bismuth supercritical CO2heat transfer in lead-bismuth fast reactor-supercritical CO2cycle system[J]. Electric Power Technology and Environmental Protection, 2023, 39(6): 471-483.

铅铋快堆-超临界CO2循环系统中铅铋/超临界CO2换热研究综述

A review of lead-bismuth supercritical CO2heat transfer in lead-bismuth fast reactor-supercritical CO2cycle system

  • 摘要: 铅铋快堆(lead-bismuth fast reactor,LFR)与超临界二氧化碳(supercritical CO2,S-CO2)循环耦合系统是提升核能利用效率,优化核能应用现状的突破性技术。为了准确把握该系统中耦合换热这一关键问题的发展动态与现状,从中间换热器技术开发、印刷电路板式换热器(printed circuit board heat exchanger,PCHE)流道优化、液态铅铋合金(liquid lead bismuth eutectic,LBE)及S-CO2流动传热机理研究、LBE及S-CO2耦合对流换热机理研究等角度出发,全面归纳总结了相关的实验研究与数值模拟成果。研究结果表明,Z型PCHE加工难度适中,换热性能优秀,弯折处加入直道或弯弧可在传热速率略微下降的前提下大幅降低换热器内压降,明确该型换热器是目前主流选择,并给出了PCHE的结构优化设计思路;液态LBE流动传热实验研究存在边界条件范围窄的问题,对比已有的传热预测关联式,对棒束、圆管等不同条件给出相应的传热预测关联式;对比分析适用于液态LBE的数值模拟方法,给出了可靠的利用雷诺时均方法的湍流模型与湍流普朗特数模型,阐释了利用四方程模型数值模拟的原理与优势;系统总结了应用于PCHE中的S-CO2传热关联式,LBE与S-CO2耦合换热研究现状与存在的问题。目前LBE与S-CO2直接耦合换热的研究成果较缺乏,仍无成熟结论明确哪种换热器结构最合适,哪种数值模型有最优的可靠性与最小的偏差值,仍需针对不同应用场景具体考虑。本文明晰了铅铋-超临界二氧化碳耦合换热应用研究的方向与困难所在,对其他类似的新型多工质耦合换热系统的开发也具有重要指导意义。

     

    Abstract: Lead-bismuth fast reactor (LFR) and supercritical carbon dioxide (S-CO2) cycle coupling system is a breakthrough technology to improve the efficiency of nuclear energy utilization and optimize the current situation of nuclear energy application.In order to accurately grasp the development and current situation of coupled heat transfer in this system,from the perspectives of intermediate heat exchanger technology development,printed circuit plate heat exchanger(PCHE) flow channel optimization,liquid lead bismuth alloy (LBE) and S-CO2flow heat transfer mechanism research,LBE and S-CO2coupled convection heat transfer mechanism research,etc.The relevant experimental research and numerical simulation results are summarized comprehensively.The results show that Z-type PCHE has moderate processing difficulty and excellent heat transfer performance,and adding straight or curved arc at the bend can greatly reduce the internal pressure drop of heat exchanger under the premise of slightly decreasing heat transfer rate.It is clear that this type of heat exchanger is the mainstream choice at present,and the structure optimization design idea of PCHE is given.The experimental study of liquid LBE flow heat transfer has the problem of narrow boundary conditions.Compared with the existing heat transfer prediction correlation formula,the corresponding heat transfer prediction correlation formula is given for different conditions such as rod bundle and round tube.The numerical simulation methods suitable for liquid LBE are compared and analyzed.The turbulence model and Prandtl number model using Reynolds time mean method are given.The principle and advantages of numerical simulation using four-equation model are explained.The research status and problems of S-CO2heat transfer correlation,LBE and S-CO2coupling heat transfer applied to PCHE are summarized systematically.At present,the research results of direct coupling heat transfer between LBE and S-CO2are lacking,and there is still no mature conclusion to determine which heat exchanger structure is the most suitable,and which numerical model has the best reliability and the least deviation value,which still needs to be considered according to different application scenarios.The conclusion of this paper clarifies the application direction and difficulties of leadbismuth-supercritical carbon dioxide coupled heat transfer,and has important significance for the development of other similar new multi-fluid coupled heat transfer systems.

     

/

返回文章
返回