谢松润, 茅大钧, 陈思勤, 魏立志. 适应“双碳”目标的煤电机组两阶段配煤优化方法[J]. 电力科技与环保, 2024, 40(4): 359-370. DOI: 10.19944/j.eptep.1674-8069.2024.04.004
引用本文: 谢松润, 茅大钧, 陈思勤, 魏立志. 适应“双碳”目标的煤电机组两阶段配煤优化方法[J]. 电力科技与环保, 2024, 40(4): 359-370. DOI: 10.19944/j.eptep.1674-8069.2024.04.004
XIE Songrun, MAO Dajun, CHEN Siqin, WEI Lizhi. Research on two-stage coal blending optimization method for thermal power units to adapt to the carbon peak and carbon neutrality goal[J]. Electric Power Technology and Environmental Protection, 2024, 40(4): 359-370. DOI: 10.19944/j.eptep.1674-8069.2024.04.004
Citation: XIE Songrun, MAO Dajun, CHEN Siqin, WEI Lizhi. Research on two-stage coal blending optimization method for thermal power units to adapt to the carbon peak and carbon neutrality goal[J]. Electric Power Technology and Environmental Protection, 2024, 40(4): 359-370. DOI: 10.19944/j.eptep.1674-8069.2024.04.004

适应“双碳”目标的煤电机组两阶段配煤优化方法

Research on two-stage coal blending optimization method for thermal power units to adapt to the carbon peak and carbon neutrality goal

  • 摘要: 面对全球资源和环境的双重制约以及国家可持续能源转型的战略要求,火电机组迫切需要低碳化转型以实现“双碳”目标。针对火电机组高比例的碳排放和成本控制需求,本文提出一种综合碳排放和经济性的两阶段配煤策略优化方法,寻求在降低环境影响和成本之间达成最佳平衡,有效应对火电机组在新时期的政策和市场挑战。采用改进的自适应混沌第二代非支配排序遗传算法对火电机组配煤策略进行双目标优化,侧重于碳排放与配煤成本间的权衡,通过得到的帕累托最优解集确定一系列符合实际运行约束的环保与经济兼顾的配煤方案。利用多准则妥协解排序法针对帕累托解集进行深入分析,从多个评价指标进行对比,确定各个配煤策略方案的排序,确保决策过程的系统性和多元性,为电厂管理层提供了清晰且切实可行的配煤策略选择,为火电机组的低碳运营策略提供了创新且实用的解决方案。基于所建立的优化模型及算法,对上海某电厂进行配煤优化研究,结果表明,该方法不仅强化了煤质利用的高效性和煤电机组的环境友好性,而且对火电行业配合国家“双碳”目标,迈向低碳发电转型的未来开辟了新思路,具有一定的理论意义和实践价值。

     

    Abstract: Faced with the dual constraints of global resources and environmental sustainability, along with strategic demands for a national sustainable energy transformation, thermal power units are urgently required to undergo a lowcarbon transition to achieve carbon peak and carbon neutrality goals. Propose a two-stage coal blending strategy optimization method integrating carbon emissions and cost control for the high proportion of carbon emissions and cost control requirements of thermal power units. The aim is to strike an optimal balance between reducing environmental impacts and controlling costs, thereby effectively addressing the policy and market challenges facing thermal power units in the new era. Firstly, an improved adaptive chaos Non-dominated Sorting Genetic Algorithm II(NSGA-II) is used for the biobjective optimization of the coal blending strategy for thermal power units, focusing on the trade-off between carbon emissions and coal blending costs. A series of environmentally friendly and economical coal blending schemes that meet the actual operational constraints are determined through the obtained Pareto optimal solution set. Further analysis of the Pareto optimal set is conducted using the VIKOR method, comparing multiple evaluation criteria to rank the coal blending strategy options. This ensures that the decision-making process is systematic and diverse, providing power plant managers with clear and actionable coal blending strategy choices and offering innovative and practical solutions for low-carbon operation of thermal power units.This method not only enhances the efficiency of coal quality utilization and the eco-friendliness of thermal power units but also paves new pathways for the coal power industry to conform to national ’dual carbon’ targets and transition towards a future of low-carbon power generation, possessing significant theoretical and practical value.

     

/

返回文章
返回