史文辉, 李凯亮, 宫廷, 田亚莉, 孙小聪, 郭古青, 邱选兵, 李传亮. 基于直接吸收光谱深度学习神经网络模型的CO2浓度检测研究[J]. 电力科技与环保, 2024, 40(1): 44-52. DOI: 10.19944/j.eptep.1674-8069.2024.01.006
引用本文: 史文辉, 李凯亮, 宫廷, 田亚莉, 孙小聪, 郭古青, 邱选兵, 李传亮. 基于直接吸收光谱深度学习神经网络模型的CO2浓度检测研究[J]. 电力科技与环保, 2024, 40(1): 44-52. DOI: 10.19944/j.eptep.1674-8069.2024.01.006
SHI Wenhui, LI Kailiang, GONG Ting, TIAN Yali, SUN Xiaocong, GUO Guqing, QIU Xuanbing, LI Ch-uanliang. Research on CO2 concentration detection based on deep learning neural network model of direct absorption spectroscopy[J]. Electric Power Technology and Environmental Protection, 2024, 40(1): 44-52. DOI: 10.19944/j.eptep.1674-8069.2024.01.006
Citation: SHI Wenhui, LI Kailiang, GONG Ting, TIAN Yali, SUN Xiaocong, GUO Guqing, QIU Xuanbing, LI Ch-uanliang. Research on CO2 concentration detection based on deep learning neural network model of direct absorption spectroscopy[J]. Electric Power Technology and Environmental Protection, 2024, 40(1): 44-52. DOI: 10.19944/j.eptep.1674-8069.2024.01.006

基于直接吸收光谱深度学习神经网络模型的CO2浓度检测研究

Research on CO2 concentration detection based on deep learning neural network model of direct absorption spectroscopy

  • 摘要: CO2是温室气体的主要成分之一,其对全球气候变化和环境质量有重大影响,燃煤电厂作为我国最大的CO2排放源,面临着严峻考验。为准确、快速、低成本地检测燃煤电厂CO2浓度,促进燃煤电厂低碳发展,本文利用分布反馈半导体激光器构建了一种高灵敏度的CO2气体检测系统,同时采用HITRAN数据库作为深度学习模型的数据集,建立了一维卷积神经网络(onedimensional convolutional neural network,1D-CNN)模型,采用反向传播神经网络算法检测CO2浓度并与直接吸收技术进行了对比,并通过K折交叉验证法和调整模型参数来提升1D-CNN模型的性能。结果表明,1D-CNN模型的决定系数R2值可达到0.999 7,相对误差为1.07%,绝对误差为7.88 mg/m3,模型建立较为符合要求;利用1D-CNN模型调用最优参数,对比预测数据和真实数据,平均相对误差为6.06%,平均绝对误差为17.97 mg/m3,决定系数R2=0.999 41,可得模型的预测结果具有较高的精度。这种基于直接吸收光谱深度学习神经网络模型的气体浓度检测模型在测量CO2气体浓度方面具有较高的准确性和可靠性,可为电力行业的环保监测和节能减排提供有力的技术支持。

     

    Abstract: Carbon dioxide(CO2) is a principal component of greenhouse gases, significantly impacting global climate change and environmental quality. Coal-fired power plants, being the largest source of CO2emissions in China, face severe challenges. Therefore, to accurately, rapidly, and cost-effectively monitor the CO2concentration in coal-fired power plants and promote their low-carbon development, this paper utilizes a distributed feedback semiconductor laser to construct a high-sensitivity CO2gas detection system. It also validates and employs the HITRAN database as the dataset for a deep learning model, establishes a one-dimensional convolutional neural network(1D-CNN) model, and a backpropagation neural network for CO2concentration detection. These models are compared with direct absorption spectroscopy technique, and the performance of the 1D-CNN model is enhanced through K-fold cross-validation and parameter adjustment. The results show that the determination coefficient(R2) of the 1D-CNN model can reach 0.9997, with a relative error of 1.07% and an absolute error of 7.88 mg/m3, indicating the model’s suitability. By utilizing the optimal parameters of the 1D-CNN model, a comparison between predicted and actual data reveals an average relative error of6.06%, an average absolute error of 17.97 mg/m3, and an R2of 0.99941, demonstrating high accuracy in the model’s predictions. This gas concentration detection model based on direct absorption spectroscopy and a deep learning neural network exhibits high accuracy and reliability in measuring CO2concentrations, offering robust technical support for environmental monitoring and energy conservation and emission reduction within the power industry.

     

/

返回文章
返回