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Distribution System External Fault Causes Identification

based on Multi-Source Information Fusion

TAN Yuan ZHANG Wenhai WANG Yang
( College of Electrical Engineering Sichuan University Chengdu 610065 China)

ABSTRACT: Accurate identification of distribution network fault causes is of great significance to shorten the time of fault
search and improve the speed of power supply recovery and power supply reliability. According to the attribution of
responsibility the causes of distribution network fault can be divided into internal causes and external causes. Internal causes
refer to electrical related causes such as equipment insulation weakening and overvoltage while external faults usually refer
to weather animal or human activities. Faults caused by external causes are the result of a combination of many factors. In
this paper a fault external cause identification method is proposed which integrates the non-electrical information such as
line parameters weather and time and the electrical information such as fault current and phase number. Firstly the
characteristics and related influencing factors of five typical external fault causes are analyzed to build the basis of
identification model. Then unsupervised learning training is used to obtain the optimal parameters of each layer of deep belief
network and supervised learning is used to fine-tune the global parameters and the classification model of external causes of
distribution network faults based on deep belief network is obtained. Finally the accuracy of the algorithm is verified by
using the actual fault data of a certain area in western China. The result shows that the recognition accuracy can reach
94.82% which proves the correctness of the method.

This work is supported by National Key R&D Program of China ( No. 2020YFF0305800) and Sichuan Natural Science
Foundation( No. 2022NSFSC0234) .
KEYWORDS: distribution system fault; external fault causes; fault cause identification; deep learning; multisource

information fusion

:TM 773 A : 1000 —7229(2023) 03 —0077 —08
DOI: 10. 12204 /j. issn. 1000 —7229. 2023. 03. 008

80%
10 kV !

(2020 YFF0305800) ;
(2022NSFSC0234)

http: //www. cepc. com. cn



78 44
24 1
. 1.1
59
S N 2015 2021
Y. 1.
1723
. 903 52.41%
AY AY N AY 5 1 o
o 7
50% -
69
10 11
12
N N Fig.1 Proportion of different fault causes in a
district from 2015 to 2021
1)
( S )
13 14 15
N N 2)
16
3)
AY N 4
4 o
A) 4)

http: //www. cepc. com. cn



79

5) .
1.2
2 7 1 o
2
Fig. 2 Correlation analysis of external fault
causes with weather
3 N
Fig.3 Correlation analysis of external fault causes with
minimum and maximum temperature 1)
/
2)
4 / N

Fig. 4 Correlation analysis of external fault causes with
number of cloudy and rainy days per week

http: //www. cepc. com. cn

5

Fig.5 Correlation analysis of external faults
causes with season
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Fig. 6 Correlation analysis of external faults
causes with month
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Fig.7 Correlation analysis of external faults
causes with time of day
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Relationship between fault causes and feature information

Table 1

%
/
b7\

12

Fig. 8 Structure of DBN

1

1.2

( deep belief network DBN)

RBM)

( restricted Boltzmann machine

RBM

17

(

.RBM

)

2.3
2.3.1

2.2

143 10 kV

10 kV

13

2021

2015

o

1723

18
one-hot

19

1723

1 821

http: //www. cepc. com. cn



81

X, = {xl Xy Xz *°

0 Tp T Ty

F1—F6 2 o

2
Table 2 Coding table of failure causes

2.4
2.4.1

Tic P i B 2 o B
ERFRE

v

EZUE ey
JEUGBARFEAR AL

v
BRFEA ST
AL B

(]

e S GRS

v
VI, AR A SR

v

WIHH1EDBNZ 3

AL
v AHhm
BRI, TG 3
FIDBN/ > 254571
¥

e A s 1 R L e

9
Fig.9 Process of fault cause identification
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