Abstract:
The intermittence of high proportion of renewable energy further aggravates the insecure operation of power system, which makes flexible resources configuration more critical. Therefore, it is necessary to conduct research on flexible resources planning and configuration of power system. For the multi-energy microgrid, a bi-level collaborative optimization method of configuration and operation of flexible resources is proposed in this paper, considering the characteristics of storage battery and power to hydrogen(P2H) equipment. Taking the minimum total annual carbon emissions and the maximum comprehensive annual profit as the objective functions for the outer layer model, and choosing maximum daily operating profit for the inner layer model, a case study under electricity-hydrogen load is carried out. Then cost reduction scenarios of these two flexibility technologies is depicted, and economic, cleanliness and flexibility indices are designed to compare and evaluate the competitiveness of the two technologies in different conditions. The results show that the proposed optimal configuration method can prominently improve the environmental benefits of the microgrid with less economic cost. At present, compared with P2H technology, storage battery technology has overwhelming advantages, but the former will have greater profit margins and market potential in the future.