王新迎, 赵琦, 赵黎媛, 杨挺. 基于深度Q学习的电热综合能源系统能量管理[J]. 电力建设, 2021, 42(3): 10-18.
引用本文: 王新迎, 赵琦, 赵黎媛, 杨挺. 基于深度Q学习的电热综合能源系统能量管理[J]. 电力建设, 2021, 42(3): 10-18.
WANG Xin-ying, ZHAO Qi, ZHAO Li-yuan, YANG Ting. Energy Management Approach for Integrated Electricity-Heat Energy System Based on Deep Q-Learning Network[J]. Electric Power Construction, 2021, 42(3): 10-18.
Citation: WANG Xin-ying, ZHAO Qi, ZHAO Li-yuan, YANG Ting. Energy Management Approach for Integrated Electricity-Heat Energy System Based on Deep Q-Learning Network[J]. Electric Power Construction, 2021, 42(3): 10-18.

基于深度Q学习的电热综合能源系统能量管理

Energy Management Approach for Integrated Electricity-Heat Energy System Based on Deep Q-Learning Network

  • 摘要: 能量管理是电热综合能源系统运行优化的重要组成部分。然而,系统中可再生能源出力的波动性以及用户负荷的随机性使得能量优化管理问题充满挑战。针对此问题,文章提出了一种计及可再生能源和负荷需求不确定性的综合能源系统能量管理方法。将电热综合能源系统的能量管理问题表述为转移概率未知的马尔科夫决策过程,定义了系统的状态空间、动作空间和奖励函数。为求解该马尔科夫决策过程,提出了一种基于深度Q学习网络的电热综合能源系统能量优化管理方法。算例仿真表明,所提方法能够自适应地对源和荷的随机波动做出响应,实现系统的能量优化管理。

     

    Abstract: Energy management plays an important role in the operation optimization of integrated electricity-heat energy systems. How ever,the fluctuation of renew able energy pow er generation and the randomness of energy loads in the system make the energy management problem full of challenges. In order to solve this problem,this paper proposes an optimal energy management approach for integrated energy system considering the uncertainties of renew able energy and load demands. In this paper,the energy management problem of the system is expressed as a Markov decision process w ith unknow n transition probability,and the state space,action space and rew ard function of the process are defined. In order to solve the M arkov decision process,an optimal energy management approach based on deep Q-learning netw ork is proposed.Simulation results show that the proposed method can adaptively respond to the random fluctuations of source and loads and realize the optimal energy management.

     

/

返回文章
返回