面向海上风电的水下压缩空气储能性能分析及提效技术

卜宪标, 陈昕, 李华山, 刘石, 舒杰

卜宪标, 陈昕, 李华山, 刘石, 舒杰. 面向海上风电的水下压缩空气储能性能分析及提效技术[J]. 电力建设, 2024, 45(8): 106-117.
引用本文: 卜宪标, 陈昕, 李华山, 刘石, 舒杰. 面向海上风电的水下压缩空气储能性能分析及提效技术[J]. 电力建设, 2024, 45(8): 106-117.
BU Xian-biao, CHEN Xin, LI Hua-shan, LIU Shi, SHU Jie. Performance Analysis and Efficiency-Improving Technology of Underwater Compressed Air Energy Storage for Offshore Wind Power[J]. Electric Power Construction, 2024, 45(8): 106-117.
Citation: BU Xian-biao, CHEN Xin, LI Hua-shan, LIU Shi, SHU Jie. Performance Analysis and Efficiency-Improving Technology of Underwater Compressed Air Energy Storage for Offshore Wind Power[J]. Electric Power Construction, 2024, 45(8): 106-117.

面向海上风电的水下压缩空气储能性能分析及提效技术

基金项目: 

国家重点研发计划(中埃国际合作)项目(2022YFE0120700)

广东省重点领域研发计划“新型高效能量转换与储能技术”(202307271900006)~~

详细信息
    作者简介:

    卜宪标(1979),男,博士,研究员,主要研究方向为压缩空气储能与地热开发利用,E-mial:buxb@ms.giec.ac.cn;陈昕(1991),女,硕士研究生,主要研究方向为压缩空气储能,E-mial:chenxin@ms.giec.ac.cn;李华山(1981),男,博士,副研究员,主要研究方向为压缩空气储能,E-mial:lihs@ms.giec.ac.cn;刘石(1974),男,博士,研究员,主要研究方向为物理及化学储能,E-mial:13925041516@139.com;舒杰(1969),男,博士,研究员,主要研究方向为综合能源,E-mial:shujie@ms.giec.ac.cn

  • 中图分类号: TM614;TK02;P752

Performance Analysis and Efficiency-Improving Technology of Underwater Compressed Air Energy Storage for Offshore Wind Power

  • 摘要: 水下压缩空气储能(underwater compressed air energy storage, UCAES)技术定压储取能,系统能量回收效率高且储能密度大,与海上风电在空间位置上天然契合。为提高UCAES的性能,构建了储取能过程数学模型,模拟分析了影响UCAES性能的关键因素并探索了提效技术。主要研究成果如下:1)针对数学模型的求解难题,提出了以能量回收效率最高作为目标函数和以热回收介质流量作为决策变量的求解方法,确定了空气和热回收介质的最佳质量配比;2)为明确定容和定压压缩空气储能的性能差异,通过对比分析了二者的工作过程,揭示了储罐压力的变化是影响性能的最关键因素,UCAES的能量回收效率和储能密度比定容压缩空气储能分别提高8.25%和120.82%;3)量化分析了设备性能和储能深度对储能性能的影响,指出提高膨胀机效率对能量回收效率的提升更有效,而深度直接决定了储能密度;4)提出了电加热提升膨胀机进气温度的提效技术,该技术提高了系统发电量并产生大量热能,加热用电能中约1/3又转化为电能,约60%转化为可利用热能,为北方濒海城市可再生能源规模化供暖提供了新选择。成果可为后续UCAES工程的建设和推广提供参考,可为海上风电的大规模发展提供坚实支撑。
    Abstract: Underwater compressed air energy storage(UCAES) has high energy recovery efficiency(round-trip efficiency) and energy storage density owing to the storage and release of energy at constant pressure and naturally corresponds to offshore wind power in terms of spatial position. To improve its performance, a mathematical model of UCAES describing the process of energy storage and release is built, the key factors affecting the performance are simulated and analyzed, and some technologies for performance improvement are explored. The main research results are as follows: 1) To solve the mathematical model, the highest energy recovery efficiency is taken as the objective function and the mass flow rate of heat recovery media as the decision variable. Subsequently, the optimum mass ratio of air to heat recovery media is determined. 2) To clarify the performance difference between UCAES and tank compressed air energy storage(TCAES), their working processes are analyzed by comparing them. The results show that the change in tank pressure is the most critical factor affecting performance. Compared with TCAES, the energy recovery efficiency and energy storage density of UCAES increased by 8.25% and 120.82%, respectively. 3) A specific quantitative analysis of the effect of equipment performance and storage depth is performed, showing that improving the efficiency of the expander is more effective in improving the energy recovery efficiency, and depth directly determines the energy storage density. 4) An efficiency improvement technology is proposed and investigated by increasing the expander inlet temperature using electrical energy. The results show that approximately 1/3 of the electrical energy used for electric heating is converted into electrical energy again, and about 60% is converted into available heat energy, which provides a new option for renewable energy heating in the northern coastal city. The results of this study can provide a reference for follow-up project construction, and the promotion of UCAES can provide solid support for the large-scale development of offshore wind power.
  • [1] 前十月达142.56GW!2023年中国光伏新增装机有望达170GW[Z/OL].中国电力网.[2023-11-24]. http://www.chinapower.com.cn/tynfd/hyyw/20231122/225156.html.
    [2]

    LEHTOLA T,ZAHEDI A.Solar energy and wind power supply supported by storage technology:a review[J].Sustainable Energy Technologies and Assessments 2019,35:25-31.

    [3] 国家海洋局印发《海洋可再生能源发展“十三五”规划》[Z/OL].[2023-11-24]. https://www.mnr.gov.cn/dt/hy/201701/t20170116_2333114.html
    [4] 关于印发“十四五”可再生能源发展规划的通知[EB/OL].[2023-11-24]. https://www.ndrc.gov.cn/xwdt/tzgg/202206/t20220601_1326720.html.
    [5] 向深远海挺进!我国加速打造五大海上风电基地[Z/OL].[2023-11-24]. http://www.sasac.gov.cn/n2588025/n2588124/c27563663/content.html.
    [6] 郭俊,刘升伟,赵天阳.含海上风储联合发电系统的韧性调度策略[J].电力建设,2023,44(2):92-100.

    GUO Jun,LIU Shengwei,ZHAO Tianyang.Resilience scheduling strategy for offshore combined wind-storage power generation system[J].Electric Power Construction,2023,44(2):92-100.

    [7] 李铮,郭小江,申旭辉,等.我国海上风电发展关键技术综述[J].发电技术,2022,43(2):186-197.

    LI Zheng,GUO Xiaojiang,SHEN Xuhui,et al.Summary of technologies for the development of offshore wind power industry in China[J].Power Generation Technology,2022,43(2):186-197.

    [8] 朱家宁,张诗钽,葛维春,等.海上风电外送及电能输送技术综述[J].发电技术,2022,43(2):236-248.

    ZHU Jianing,ZHANG Shitan,GE Weichun,et al.Overview of offshore wind power transmission and power transportation technology[J].Power Generation Technology,2022,43(2):236-248.

    [9] 李瑞,陈来军,梅生伟,等.先进绝热压缩空气储能变工况运行特性建模及风储协同分析[J].电力系统自动化,2019,43(11):25-33.

    LI Rui,CHEN Laijun,MEI Shengwei,et al.Modelling the off-design operation characteristics of advanced adiabatic compressed air energy storage and cooperative analysis of hybrid wind power and energy storage system[J].Automation of Electric Power Systems,2019,43(11):25-33.

    [10] 孙晓霞,桂中华,高梓玉,等.压缩空气储能系统动态运行特性[J].储能科学与技术,2023,12(6):1840-1853.

    SUN Xiaoxia,GUI Zhonghua,GAO Ziyu,et al.Dynamic characteristics of compressed air energy storage system[J].Energy Storage Science and Technology,2023,12(6):1840-1853.

    [11] 侯磊,王子驰,李营超,等.压缩空气储能系统分析及多目标优化[J].储能科学与技术,2021,10(1):379-384.

    HOU Lei,WANG Zichi,LI Yingchao,et al.Analysis and multi-objective optimization of CAES system[J].Energy Storage Science and Technology,2021,10(1):379-384.

    [12] 王志文,熊伟,王海涛,等.水下压缩空气储能研究进展[J].储能科学与技术,2015,4(6):585-598.

    WANG Zhiwen,XIONG Wei,WANG Haitao,et al.A review on underwater compressed air energy storage[J].Energy Storage Science and Technology,2015,4(6):585-598.

    [13] 刘扬波,陈俊生,李全皎,等.海上风电水下压缩空气储能系统运行及变工况分析[J].南方电网技术,2022,16(4):50-59.

    LIU Yangbo,CHEN Junsheng,LI Quanjiao,et al.Operation and varying load analysis of offshore wind-underwater compressed air energy storage system[J].Southern Power System Technology,2022,16(4):50-59.

    [14] 袁照威,杨易凡.压缩空气储能技术研究现状及发展趋势[J].南方能源建设,2024,11(2):146-153.

    YUAN Zhaowei,YANG Yifan.Research status and development trend of compressed air energy storage technology[J].Southern Energy Construction,2024,11(2):146-153.

    [15] 郑开云,池捷成,张学锋.一种双工质气体压缩储能系统及其可行性分析[J].南方能源建设,2024,11(2):154-161.

    ZHENG Kaiyun,CHI Jiecheng,ZHANG Xuefeng.An energy storage system with binary cycle gas compression and its feasibility analysis[J].Southern Energy Construction,2024,11(2):154-161.

    [16] 万明忠,杨易凡,袁照威,等.大容量压缩空气储能关键技术[J].南方能源建设,2023,10(6):26-33.

    WAN Mingzhong,YANG Yifan,YUAN Zhaowei,et al.Key technologies of large-scale compressed air energy storage[J].Southern Energy Construction,2023,10(6):26-33.

    [17]

    WANG Z W,XIONG W,TING D S K,et al.Conventional and advanced exergy analyses of an underwater compressed air energy storage system[J].Applied Energy,2016,180:810-822.

    [18]

    EBRAHIMI M,CARRIVEAU R,TING D S K,et al.Conventional and advanced exergy analysis of a grid connected underwater compressed air energy storage facility[J].Applied Energy,2019,242:1198-1208.

    [19]

    LIU Z,DING J L,HUANG X Y,et al.Analysis of a hybrid heat and underwater compressed air energy storage system used at coastal areas[J].Applied Energy,2024,354:122142.

    [20]

    CHEUNG B C,CARRIVEAU R,TING D S K.Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm[J].Energy,2014,74:396-404.

    [21]

    KARACA A E,DINCER I,NITEFOR M.A new renewable energy system integrated with compressed air energy storage and multistage desalination[J].Energy,2023,268:126723.

    [22]

    LIU Z,LIU X,YANG S J,et al.Assessment evaluation of a trigeneration system incorporated with an underwater compressed air energy storage[J].Applied Energy,2021,303:117648.

    [23]

    PIMM A J,GARVEY S D,DE JONG M.Design and testing of Energy Bags for underwater compressed air energy storage[J].Energy,2014,66:496-508.

    [24]

    DE JONG M.Commercial grid scaling of Energy Bags for underwater compressed air energy storage[J].International Journal of Environmental Studies,2014:1-8.

    [25] 刘超群,谢迎春,李相坤,等.水下储气装置的水动力学特性分析[J].机电工程,2023,40(8):1284-1290.

    LIU Chaoqun,XIE Yingchun,LI Xiangkun,et al.Analysis of hydrodynamic characteristics of underwater gas storage device[J].Journal of Mechanical & Electrical Engineering,2023,40(8):1284-1290.

    [26] 王金舜,王虎,熊伟,等.水下压缩空气储能系统储气装置的CFD数值模拟[J].液压与气动,2021(1):27-35.

    WANG Jinshun,WANG Hu,XIONG Wei,et al.Numerical simulation of air storage container in underwater compressed air storage system[J].Chinese Hydraulics & Pneumatics,2021(1):27-35.

    [27]

    BUDT M,WOLF D,SPAN R,et al.A review on compressed air energy storage:basic principles,past milestones and recent developments[J].Applied Energy,2016,170:250-268.

    [28] 程浙武.低温绝热压缩空气储能系统变工况性能分析及设计优化研究[D].杭州:浙江大学,2019.CHENG Zhewu.Research on off-design performance analysis and design optimization of low-temperature adiabatic compressed air energy storage system[D].Hangzhou:Zhejiang University,2019.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-23
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回