张培杰, 陈春宇, 任必兴, 臧天磊, 戴雪梅, 张晓. 极端风暴下的海上风电制氢联合运行系统爬坡控制策略[J]. 电力建设, 2024, 45(4): 1-12.
引用本文: 张培杰, 陈春宇, 任必兴, 臧天磊, 戴雪梅, 张晓. 极端风暴下的海上风电制氢联合运行系统爬坡控制策略[J]. 电力建设, 2024, 45(4): 1-12.
ZHANG Pei-jie, CHEN Chun-yu, REN Bi-xing, ZANG Tian-lei, DAI Xue-mei, ZHANG Xiao. Ramp-Control Strategy for Offshore Wind-Electrolysis Joint System under Extreme Storm Conditions[J]. Electric Power Construction, 2024, 45(4): 1-12.
Citation: ZHANG Pei-jie, CHEN Chun-yu, REN Bi-xing, ZANG Tian-lei, DAI Xue-mei, ZHANG Xiao. Ramp-Control Strategy for Offshore Wind-Electrolysis Joint System under Extreme Storm Conditions[J]. Electric Power Construction, 2024, 45(4): 1-12.

极端风暴下的海上风电制氢联合运行系统爬坡控制策略

Ramp-Control Strategy for Offshore Wind-Electrolysis Joint System under Extreme Storm Conditions

  • 摘要: 全球气候变暖导致海域极端风暴事件频繁发生,引发海上风电大规模爬坡,影响岸上主网的安全运行。通过电解制氢系统,海上风电制氢联合运行系统将富余风电功率转换为氢能,降低了弃风率和弃风惩罚成本;同时,可以出售氢能获利,提升了经济效益。提出了一种考虑风电不确定性的爬坡控制策略。首先,比较了传统风电场与风电制氢联合运行系统在极端风暴下的爬坡特性,分析了风电制氢联合运行系统的爬坡抑制特性;然后,使用机会约束规划方法构建了考虑源-储-荷运行特性与海上风电不确定性的爬坡控制模型,通过求解爬坡控制模型给出了爬坡控制策略;最后,基于客观权重赋权法(criteria importance though intercrieria correlation, CRITIC)-优劣解距离法((technique for order preference by similarity to ideal solution, TOPSIS)综合评价模型对不同置信度下系统附加运行成本与不确定性资源投入率进行分析,得到最佳置信度。仿真结果表明,同样采取并网功率爬坡控制的情况下,海上风电制氢联合运行系统的综合运行成本(29.87万元)远低于海上风电场(133.28万元,包括弃风惩罚)。在考虑风电不确定性情况下,置信度取0.98可以均衡系统的成本控制与风险抑制效果。

     

    Abstract: The global climate change has resulted in frequent extreme storm events in marine areas. Consequently, significant offshore wind power ramps have occurred, thus affecting the safe operation of onshore main grids. Through an electrolysis system, the offshore wind-electrolysis joint system(OWEJS) converts surplus power into hydrogen power, thereby reducing wind-power curtailment rates and penalty costs. Meanwhile, the OWEJS can sell hydrogen power and enhance its economic benefits. This study proposes an OWEJS ramp-control scheme that considers wind-power uncertainties. First, the ramp characteristics of conventional offshore wind farms and the OWEJS under extreme storms are compared, and the ramp-suppression characteristics of the OWEJS are investigated. Second, chance-constrained programming is performed to construct a ramp-control model that considers the “source-storage-load” operating characteristics and offshore wind-power uncertainty. Finally, the CRITIC-TOPSIS comprehensive evaluation model is used to analyze the additional operating costs and uncertain resource-usage rates at different confidence levels to obtain the optimal confidence level. Simulation results show that under the same grid-power ramp-control conditions, the comprehensive operating cost of the offshore wind and hydrogen co-generation system is 0.29 million yuan, which is significantly lower than the 1.33 million yuan for offshore wind farms. When considering wind-power uncertainty, a confidence level of 0.98 can offer balance between cost control and risk mitigation.

     

/

返回文章
返回