安佳坤, 贺春光, 刘洪, 凌云鹏, 齐晓光, 李维宇, 孙鹏飞, 檀晓林. 基于强化学习的建筑集群需求侧能量管理方法[J]. 电力建设, 2021, 42(5): 16-26.
引用本文: 安佳坤, 贺春光, 刘洪, 凌云鹏, 齐晓光, 李维宇, 孙鹏飞, 檀晓林. 基于强化学习的建筑集群需求侧能量管理方法[J]. 电力建设, 2021, 42(5): 16-26.
AN Jia-kun, HE Chun-guang, LIU Hong, LING Yun-peng, QI Xiao-guang, LI Wei-yu, SUN Peng-fei, TAN Xiao-lin. Demand-Side Energy Management Method for Building Clusters Applying Reinforcement Learning[J]. Electric Power Construction, 2021, 42(5): 16-26.
Citation: AN Jia-kun, HE Chun-guang, LIU Hong, LING Yun-peng, QI Xiao-guang, LI Wei-yu, SUN Peng-fei, TAN Xiao-lin. Demand-Side Energy Management Method for Building Clusters Applying Reinforcement Learning[J]. Electric Power Construction, 2021, 42(5): 16-26.

基于强化学习的建筑集群需求侧能量管理方法

Demand-Side Energy Management Method for Building Clusters Applying Reinforcement Learning

  • 摘要: 针对当前对于强化学习在需求侧能量管理及用户侧需求响应等方面应用的可行性亟待进一步探索等问题,文章提出了基于强化学习的建筑集群需求侧能量管理方法。首先,以建筑集群为终端用能负荷载体,构建了建筑集群需求侧能量管理框架;其次,基于智能建筑的相变虚拟储能特性,构建了一种新的智能建筑热阻-热容(R-C)热平衡模型以及用户灵活性负荷模型,并结合Q学习算法,构建了基于强化学习的需求侧能量管理模型;最后,通过实际仿真算例,对需求侧能量管理结果以及算法的性能进行了对比分析,从而验证文章所提理论方法的有效性与实用性。

     

    Abstract: In view of the current need to further explore the feasibility of the application of reinforcement learning in demand-side energy management and user-side demand response,this paper proposes a demand-side energy management method for building clusters on the basis of reinforcement learning.Firstly,the building clusters are used as the terminal energy load carrier to construct the demand-side energy management framework of the building clusters.Secondly,according to the virtual energy storage characteristics of the intelligent buildings,a novel intelligent building thermal resistance-capacity(R-C) thermal balance model and user flexibility load model are constructed,and a demand-side energy management model based on reinforcement learning is constructed by combining Q-learning algorithm.Finally,the effectiveness and practicability of the proposed theoretical method are verified by comparing the results of demand-side energy management and the performance of the algorithm through actual simulation cases.

     

/

返回文章
返回