张振, 苏欣荣, 袁新. 基于物理信息神经网络的气膜冷却湍流模型反演学习[J]. 动力工程学报, 2024, 44(9): 1459-1465. DOI: 10.19805/j.cnki.jcspe.2024.240201
引用本文: 张振, 苏欣荣, 袁新. 基于物理信息神经网络的气膜冷却湍流模型反演学习[J]. 动力工程学报, 2024, 44(9): 1459-1465. DOI: 10.19805/j.cnki.jcspe.2024.240201
ZHANG Zhen, SU Xinrong, YUAN Xin. PINN-based Inversion Learning of Turbulence Model for Film Cooling[J]. Journal of Chinese Society of Power Engineering, 2024, 44(9): 1459-1465. DOI: 10.19805/j.cnki.jcspe.2024.240201
Citation: ZHANG Zhen, SU Xinrong, YUAN Xin. PINN-based Inversion Learning of Turbulence Model for Film Cooling[J]. Journal of Chinese Society of Power Engineering, 2024, 44(9): 1459-1465. DOI: 10.19805/j.cnki.jcspe.2024.240201

基于物理信息神经网络的气膜冷却湍流模型反演学习

PINN-based Inversion Learning of Turbulence Model for Film Cooling

  • 摘要: 由于气膜冷却问题中湍流的复杂特性,传统雷诺平均(RANS)方法会低估湍流的热扩散强度,导致冷却效果计算不准确。对此提出了一套基于物理信息神经网络(PINN)的湍流建模框架,基于RANS流场和大涡模拟(LES)温度场,建立了数据驱动的湍流普朗特数神经网络模型,在RANS求解器中嵌入该模型,可以动态调整湍流的热扩散强度,获得了与LES高度一致的温度场。结果表明:PINN是构建数据驱动湍流模型的良好方法,对于湍流普朗特数的建模可以有效提升RANS方法对温度预测的准确性。

     

    Abstract: Due to the complexity of turbulent flow problems for film cooling, the traditional Reynolds average Navier-Stokes(RANS) method tends to underestimate the intensity of turbulent thermal diffusion, leading to inaccurate prediction of cooling effectiveness. A framework based on physics-informed neural network(PINN) was therefore proposed, and a data-driven neural network model of turbulent Prandtl number was built based on RANS flow data and large eddy simulation(LES)temperature data. After implementing this model into a RANS solver, the intensity of turbulent thermal diffusion could be adjusted dynamically and a temperature distribution highly consistent with LES results was obtained. Results show that PINN is an effective method to build a data-driven turbulence model and modeling of turbulent Prandtl number can effectively improve the accuracy of RANS temperature prediction.

     

/

返回文章
返回