刘希锴, 王鼎, 刘仕桢, 张荻. 吸收式制冷压缩CO2储能系统性能分析[J]. 动力工程学报, 2024, 44(3): 361-368. DOI: 10.19805/j.cnki.jcspe.2024.230610
引用本文: 刘希锴, 王鼎, 刘仕桢, 张荻. 吸收式制冷压缩CO2储能系统性能分析[J]. 动力工程学报, 2024, 44(3): 361-368. DOI: 10.19805/j.cnki.jcspe.2024.230610
LIU Xikai, WANG Ding, LIU Shizhen, ZHANG Di. Performance Analysis of CO2 Energy Storage System with Absorption Refrigeration Cycle[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 361-368. DOI: 10.19805/j.cnki.jcspe.2024.230610
Citation: LIU Xikai, WANG Ding, LIU Shizhen, ZHANG Di. Performance Analysis of CO2 Energy Storage System with Absorption Refrigeration Cycle[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 361-368. DOI: 10.19805/j.cnki.jcspe.2024.230610

吸收式制冷压缩CO2储能系统性能分析

Performance Analysis of CO2 Energy Storage System with Absorption Refrigeration Cycle

  • 摘要: 提出了一种结合了吸收式制冷循环的压缩CO2储能系统,该系统采用分流的方式,将一部分CO2引流至二级压缩机,将压缩产生的热量提供给吸收式制冷循环,使其启动工作并提供冷量给主路CO2,同时使用高压罐储存液态CO2,从而提高系统的储能效率。此外,对该系统进行了热力学分析和多目标优化。结果表明:在设计工况下,吸收器、一级压缩机、透平和级后换热器的■损较大;本系统的储能效率随着冷凝压力、压缩机等熵效率和透平等熵效率的增加而提高,而储能压力的增大会使系统的储能效率降低;系统的最佳储能效率为68.70%,能量密度为0.153 kW·h/m3

     

    Abstract: A CO2 energy storage system with absorption refrigeration cycle was proposed, which adopted a split flow method to divert a portion of CO2 to the secondary compressor, the heat generated by the secondary compression was provided to the absorption refrigeration cycle, which provided cooling capacity for the main CO2 in system, and used the high-pressure storage tank to store CO2 in the liquid state, to improve the system energy storage efficiency. Thermodynamic analysis and multi-objective optimization of the system were carried out. Results show that the absorber, first stage compressor, turbine and post stage heat exchanger have relatively high exergy destruction under design condition. The system energy storage efficiency increases with the increase of condensation pressure, the adiabatic efficiency of compressor and turbine. However, the system energy storage efficiency decreases with the increase of the storage pressure. The optimal energy storage efficiency and energy density of the system are 68.70% and 0.153 kW·h/m~3, respectively.

     

/

返回文章
返回