Abstract:
During chemical looping combustion, oxygen carrier plays a crucial role as the carriers of oxygen and heat. Design of oxygen carrier has always been the emphasis and difficulty in chemical looping technology research. Chemical looping combustion usually occurs in a fluidized bed reactor. Since the chemical stress caused by chemical reactions has the greatest contribution rate to the abrasion of oxygen carrier, the life of oxygen carrier is significantly shortened and the effective components run away. From the perspective of oxygen carrier structure design, the anti-abrasion mechanism of different composite oxygen carriers was qualitatively evaluated. The core-shell structure inhibits the phase separation of the active components and avoids the deactivation of oxygen carrier caused by surface abrasion of the active components. The addition of Al
2O
3 fiber and "rivet" inhibits crack growth and slows down the abrasion of the material. The addition of fuel ash improves the skeleton strength of the composite oxygen carriers, and the resistance to abrasion and slagging aggregation of oxygen carriers. The synergistic effect of the composite oxygen carrier increases the reactivity and slows down the sintering agglomeration phenomenon. From the perspective of abrasion dynamics and service life, the abrasion conditions of different oxygen carriers were quantitatively compared. By logarithmically fitting of the Gwyn abrasion dynamics equation, fitting parameters K and n of different oxygen carriers were calculated, which reflects the abrasion mechanism and abrasion patterns.