王曼, 周小雨, 陈凡, 赖业宁, 朱瑛. 融合MHSA与Boruta的电力系统暂态功角稳定关键特征筛选[J]. 电力工程技术, 2025, 44(1): 155-164. DOI: 10.12158/j.2096-3203.2025.01.016
引用本文: 王曼, 周小雨, 陈凡, 赖业宁, 朱瑛. 融合MHSA与Boruta的电力系统暂态功角稳定关键特征筛选[J]. 电力工程技术, 2025, 44(1): 155-164. DOI: 10.12158/j.2096-3203.2025.01.016
WANG Man, ZHOU Xiaoyu, CHEN Fan, LAI Yening, ZHU Ying. Fusion of MHSA and Boruta for key feature selection in power system transient angle stability[J]. Electric Power Engineering Technology, 2025, 44(1): 155-164. DOI: 10.12158/j.2096-3203.2025.01.016
Citation: WANG Man, ZHOU Xiaoyu, CHEN Fan, LAI Yening, ZHU Ying. Fusion of MHSA and Boruta for key feature selection in power system transient angle stability[J]. Electric Power Engineering Technology, 2025, 44(1): 155-164. DOI: 10.12158/j.2096-3203.2025.01.016

融合MHSA与Boruta的电力系统暂态功角稳定关键特征筛选

Fusion of MHSA and Boruta for key feature selection in power system transient angle stability

  • 摘要: 现有暂态稳定特征选择方法中初始特征的选定会限制后续寻找最佳特征组合的能力,同时缺乏客观方法来确定关键特征的数量,为此,文中提出一种融合多头自注意力(multi-head self-attention,MHSA)与Boruta的暂态功角稳定关键特征筛选方法。首先,构建深度神经网络模型,并在输入侧添加MHSA模块进行暂态稳定评估。MHSA直接面向输入的电网特征,可在模型训练过程中自适应调整注意力权重,聚焦关键特征。其次,利用Boruta算法生成真假特征组合,经过MHSA模型的训练,选择高于最大虚假特征权重的真实特征,由模型本身确定关键特征数量。最后,在IEEE 39和IEEE 118节点系统上进行算例分析。算例结果表明,所提方法可在保证评估精度的同时大幅减少输入特征的数量,相比于传统方法,可选出评估精度更高的关键特征。

     

    Abstract: In response to challenges posed by existing transient stability feature selection methods, which often encounter limitations in searching for the optimum combination of critical features and lack an objective criterion for determining the optimal number of key features, this paper introduces a novel approach. A transient power angle stability key feature selection method that seamlessly integrates multi-head self-attention (MHSA) and the Boruta algorithm. A deep neural network (DNN) with an MHSA model is initially constructed to execute transient stability assessments directly on the input grid features. The model dynamically adjusts attention weights during training, focusing on key features. Subsequently, the Boruta algorithm is employed to determine the number of key features. It generates a combination of real and virtual features, which the MHSA model trains to select the actual features that are higher than the maximum virtual feature weight, and the model autonomously determines the optimal number of key features. An analysis is conducted on the IEEE 39-node and 118-node systems to validate the proposed method. The results demonstrate that this approach ensures evaluation accuracy while significantly reducing the number of input features. Moreover, the key features identified exhibit higher evaluation accuracy than traditional methods.

     

/

返回文章
返回