张彼德, 邱杰, 娄广鑫, 周灿, 罗蜻清, 李天倩. 基于CNN和Transformer的轻量化电能质量扰动识别模型[J]. 电力工程技术, 2025, 44(1): 69-78. DOI: 10.12158/j.2096-3203.2025.01.008
引用本文: 张彼德, 邱杰, 娄广鑫, 周灿, 罗蜻清, 李天倩. 基于CNN和Transformer的轻量化电能质量扰动识别模型[J]. 电力工程技术, 2025, 44(1): 69-78. DOI: 10.12158/j.2096-3203.2025.01.008
ZHANG Bide, QIU Jie, LOU Guangxin, ZHOU Can, LUO Qingqing, LI Tianqian. A lightweight power quality disturbance recognition model based on CNN and Transformer[J]. Electric Power Engineering Technology, 2025, 44(1): 69-78. DOI: 10.12158/j.2096-3203.2025.01.008
Citation: ZHANG Bide, QIU Jie, LOU Guangxin, ZHOU Can, LUO Qingqing, LI Tianqian. A lightweight power quality disturbance recognition model based on CNN and Transformer[J]. Electric Power Engineering Technology, 2025, 44(1): 69-78. DOI: 10.12158/j.2096-3203.2025.01.008

基于CNN和Transformer的轻量化电能质量扰动识别模型

A lightweight power quality disturbance recognition model based on CNN and Transformer

  • 摘要: 针对目前基于深度学习的电能质量扰动(power quality disturbances, PQDs)识别模型参数量多和计算复杂度较高的问题,文中提出了一种卷积神经网络(convolutional neural networks, CNN)融合Transformer(CNN and Transformer, CaT)的轻量化PQDs识别模型。首先,利用深度可分离卷积初步提取扰动信号的局部特征;其次,提出一种高效的软阈值模块,在不显著增加模型参数量与计算复杂度的同时减少特征中的噪声与冗余特征;然后,利用Transformer模型挖掘PQDs信号的全局特征;最后,通过池化层、线性层和Softmax层完成PQDs识别。仿真实验表明,文中所提CaT模型在参数量和浮点运算数较少的情况下能够有效完成PQDs识别,对PQDs信号识别准确率高,具有良好的噪声鲁棒性。同时,得益于轻量化和端到端的模型设计,CaT模型相对于其他深度学习模型的推理时间更短。

     

    Abstract: A lightweight power quality disturbances (PQDs) recognition model that integrates convolutional neural network (CNN) and Transformer (CaT) is proposed to address the high number of parameters and computational complexity in existing deep learning-based models. Depthwise separable convolutions are first employed to extract local features from the disturbance signals. An efficient softthreshold block is then introduced to reduce noise and redundant features without significantly increasing the model′s parameters or complexity. The Transformer model is used to capture global features of the disturbance signals. Finally, pooling layers, fully connected layers, and Softmax are applied to complete the recognition PQDs. Simulation experiments demonstrate that the CaT model effectively recognizes PQDs with fewer parameters and floating point operations, achieving high accuracy and strong noise robustness. Its lightweight, end-to-end design also results in shorter inference times compared to other deep learning models.

     

/

返回文章
返回