涂嘉毅, 关向雨, 赵俊义, 林建港, 赖泽楷. 基于SVD-IACMD的GIS振动信号去噪算法[J]. 电力工程技术, 2024, 43(6): 163-172. DOI: 10.12158/j.2096-3203.2024.06.016
引用本文: 涂嘉毅, 关向雨, 赵俊义, 林建港, 赖泽楷. 基于SVD-IACMD的GIS振动信号去噪算法[J]. 电力工程技术, 2024, 43(6): 163-172. DOI: 10.12158/j.2096-3203.2024.06.016
TU Jiayi, GUAN Xiangyu, ZHAO Junyi, LIN Jiangang, LAI Zekai. GIS vibration signal denoising algorithm based on SVD-IACMD[J]. Electric Power Engineering Technology, 2024, 43(6): 163-172. DOI: 10.12158/j.2096-3203.2024.06.016
Citation: TU Jiayi, GUAN Xiangyu, ZHAO Junyi, LIN Jiangang, LAI Zekai. GIS vibration signal denoising algorithm based on SVD-IACMD[J]. Electric Power Engineering Technology, 2024, 43(6): 163-172. DOI: 10.12158/j.2096-3203.2024.06.016

基于SVD-IACMD的GIS振动信号去噪算法

GIS vibration signal denoising algorithm based on SVD-IACMD

  • 摘要: 振动测量对发现气体绝缘开关设备(gas insulated switchgear,GIS)潜在性缺陷具有重要意义,但GIS本体振动信号易受基础振动、测量噪声以及环境噪声的影响,使得现场GIS振动带电检测和机械缺陷诊断的效果较差。针对此问题,提出一种基于奇异值分解(singular value decomposition, SVD)-改进自适应啁啾模态分解(improve adaptive chirp mode decomposition, IACMD)的现场振动信号降噪算法。该方法首先利用SVD对原始振动信号进行预处理,滤除低频基础振动和测量噪声,其次利用鱼鹰优化算法(osprey optimization algorithm, OOA)对处理后的信号进行自适应模态分解,得到分解后的固有模态(intrinsic mode functions,IMF)分量,再利用互相关系数筛选有效分量重构振动信号。模拟信号与现场信号测试结果表明:与OOA-自适应啁啾模态分解(adaptive chirp mode decomposition,ACMD)和SVD-变分模态分解(variational mode decomposition, VMD)相比,所提出的SVD-IACMD算法可以去除基础振动、测量噪声和环境噪声,保留GIS本体振动的基频和谐波分量,为GIS现场抗干扰振动检测和机械缺陷诊断提供技术支持。

     

    Abstract: Conducting vibration measurement is important for detecting potential defects in gas insulated switchgear (GIS). However, the vibration signals of the GIS body are affected by the base vibration, measurement noise, and environmental noise, which leads to poor performance in on-site GIS vibration live detection and mechanical defect diagnosis. In response to the current situation, an on-site vibration signal denoising diagnosis algorithm based on the singular value decomposition (SVD)-improve adaptive chirp mode decomposition (IACMD) algorithm is proposed. Firstly, SVD is used to preprocess the original vibration signals to filter out low-frequency base vibrations and measurement noise. Subsequently, the osprey optimization algorithm (OOA) is used for adaptive modal decomposition of the processed signals, resulting in decomposed intrinsic mode functions (IMF). Then, the correlation coefficient is used to screen effective components for reconstructing the vibration signal. Test results from simulated and field signals demonstrate that, compared to OOA-adaptive chirp mode decomposition (ACMD) and SVD-variational mode decomposition (VMD), the proposed SVD-IACMD algorithm can remove base vibrations, measurement noise, and environmental noise while preserving the fundamental frequency and harmonic components of the GIS body vibration. Technical support for on-site anti-interference detection of GIS vibration and mechanical defect diagnosis is provided.

     

/

返回文章
返回