樊倩男, 刘树勇, 蔡云帆, 宋杰, 高振生. 基于Transformer的稳健电力负荷预测[J]. 电力大数据, 2022, 25(5): 19-27. DOI: 10.19317/j.cnki.1008-083x.2022.05.007
引用本文: 樊倩男, 刘树勇, 蔡云帆, 宋杰, 高振生. 基于Transformer的稳健电力负荷预测[J]. 电力大数据, 2022, 25(5): 19-27. DOI: 10.19317/j.cnki.1008-083x.2022.05.007
FAN Qian-nan, LIU Shu-yong, CAI Yun-fan, SONG Jie, GAO Zhen-sheng. Transformer-Based Robust Power Load Forecasting[J]. Power Systems and Big Data, 2022, 25(5): 19-27. DOI: 10.19317/j.cnki.1008-083x.2022.05.007
Citation: FAN Qian-nan, LIU Shu-yong, CAI Yun-fan, SONG Jie, GAO Zhen-sheng. Transformer-Based Robust Power Load Forecasting[J]. Power Systems and Big Data, 2022, 25(5): 19-27. DOI: 10.19317/j.cnki.1008-083x.2022.05.007

基于Transformer的稳健电力负荷预测

Transformer-Based Robust Power Load Forecasting

  • 摘要: 新型电力系统建设背景下,可再生能源接入和用电负荷类型的多元化为电力系统负荷预测精准性提出了更高的要求,但现有电力负荷预测方法没有考虑数据噪声对预测模型的负面作用,导致其预测精度易受到观测数据噪声的影响,难以应用于实际场景。本文梳理研究了基于深度学习的负荷预测方法,引入Transformer算法搭建负荷预测模型,并针对温度、湿度等具有一定波动性的电力负荷影响因素,施以概率分布的预处理,形成基于Transformer的稳健预测模型。通过将Transformer基础预测模型和基于Transformer的稳健预测模型分别在公开的原始数据集和引入噪声的数据集上进行实验对比分析,验证了Transformer负荷预测模型能有效应对数据噪声,且将模型输入考虑数据分布后的Transformer负荷预测模型能在保证预测精度的基础上提升预测模型的稳健性。

     

    Abstract: Under the background of new power system construction, the diversification of renewable energy access and electric load type puts forward higher requirements for the accuracy of power load forecasting. However, the existing power load forecasting methods do not consider the negative effects of data noise on the forecasting model, which makes its forecasting accuracy being easily affected by the noise of observation data, and then the methods are difficult to be applied to actual scenarios. This paper firstly combs and studies the load forecasting methods based on deep learning, and introduces transformer algorithm to build a load forecasting model; secondly, a transformer-based robust power load forecasting model is formed by applying probability distribution preprocessing to the power load influencing factors with certain volatility, such as temperature and humidity; thirdly, by comparing and analyzing the transformer basic forecasting model and the transformer based robust forecasting model on the open original data set and the data set with noise, it is verified that the transformer load forecasting model can effectively deal with the data noise, and the transformer load forecasting model considering the data distribution can improve the robustness of the model on the basis of ensuring the forecasting accuracy.

     

/

返回文章
返回