崔立卿, 王胜男, 袁海范, 李钟煦, 李乐, 何丽钦, 吴星桥. 基于神经网络MLP和RBF的全社会用电量预测研究[J]. 电力大数据, 2023, 26(9): 31-39. DOI: 10.19317/j.cnki.1008-083x.2023.09.004
引用本文: 崔立卿, 王胜男, 袁海范, 李钟煦, 李乐, 何丽钦, 吴星桥. 基于神经网络MLP和RBF的全社会用电量预测研究[J]. 电力大数据, 2023, 26(9): 31-39. DOI: 10.19317/j.cnki.1008-083x.2023.09.004
CUI Li-qing, WANG Sheng-nan, YUAN Hai-fan, LI Zhong-xu, LI Le, HE Li-qin, WU Xing-qiao. Research on the Prediction of Total Social Electricity Consumption Based on MLP and RBF Algorithm[J]. Power Systems and Big Data, 2023, 26(9): 31-39. DOI: 10.19317/j.cnki.1008-083x.2023.09.004
Citation: CUI Li-qing, WANG Sheng-nan, YUAN Hai-fan, LI Zhong-xu, LI Le, HE Li-qin, WU Xing-qiao. Research on the Prediction of Total Social Electricity Consumption Based on MLP and RBF Algorithm[J]. Power Systems and Big Data, 2023, 26(9): 31-39. DOI: 10.19317/j.cnki.1008-083x.2023.09.004

基于神经网络MLP和RBF的全社会用电量预测研究

Research on the Prediction of Total Social Electricity Consumption Based on MLP and RBF Algorithm

  • 摘要: 全社会用电量是衡量社会各行业生产和生活过程中电能消耗的重要指标,它能够准确反映出一段时间内社会发展的速度。电网企业、政府部门对未来一段时间全社会用电量预测值有很高的精度要求,因为精度越高,电网企业能够更好地调配电力资源以保持系统的稳定性。本文首先介绍了两种经典的神经网络预测模型,并从A县政府公布的数据中采集了2022年地区生产总值、建筑业总产值等数据,缺失值采用线性趋势和平滑处理法进行填补。接着,利用SPSS软件分别建立了神经网络多层感知机(MLP)和径向基函数(RBF)模型,并利用处理后的数据对模型进行训练和测试。在分析残差和自变量重要性的基础上,最后对预测结果的准确性进行了评估。研究结果表明,在全社会用电量预测方面,“径向基函数”模型具有更高的准确性和稳定性。

     

    Abstract: Total social electricity consumption is a vital indicator measuring the electric energy consumption in various industrial and domestic processes of society. It accurately reflects the pace of societal development over a period. Power grid companies and government departments demand high accuracy in future predictions of total social electricity consumption, as higher precision enables better allocation of electric power resources to maintain system stability. This paper first introduces two classic neural network prediction models and collects data like the 2022 regional GDP and total output value of the construction industry from the data published by the government of County A, filling missing values using linear trend and smoothing methods. Subsequently, using SPSS software, multilayer perceptron(MLP) and radial basis function(RBF) models were established, and the processed data were used for training and testing these models. After analyzing the residuals and the importance of independent variables, the accuracy of the prediction results was evaluated. The study concludes that the RBF model demonstrates higher accuracy and stability in predicting total social electricity consumption.

     

/

返回文章
返回