陈英达, 林克全, 卢志良, 董召杰, 杨伟, 王鹏凯. 基于区块链和博弈论的碳交易多方定价机制研究与系统设计[J]. 电力大数据, 2023, 26(6): 80-88. DOI: 10.19317/j.cnki.1008-083x.2023.06.009
引用本文: 陈英达, 林克全, 卢志良, 董召杰, 杨伟, 王鹏凯. 基于区块链和博弈论的碳交易多方定价机制研究与系统设计[J]. 电力大数据, 2023, 26(6): 80-88. DOI: 10.19317/j.cnki.1008-083x.2023.06.009
CHEN Ying-da, LIN Ke-quan, LU Zhi-liang, DONG Zhao-jie, YANG Wei, WANG Peng-kai. Research and System Design of Carbon Trading Multi-party Pricing Mechanism Based on Blockchain and Game Theory[J]. Power Systems and Big Data, 2023, 26(6): 80-88. DOI: 10.19317/j.cnki.1008-083x.2023.06.009
Citation: CHEN Ying-da, LIN Ke-quan, LU Zhi-liang, DONG Zhao-jie, YANG Wei, WANG Peng-kai. Research and System Design of Carbon Trading Multi-party Pricing Mechanism Based on Blockchain and Game Theory[J]. Power Systems and Big Data, 2023, 26(6): 80-88. DOI: 10.19317/j.cnki.1008-083x.2023.06.009

基于区块链和博弈论的碳交易多方定价机制研究与系统设计

Research and System Design of Carbon Trading Multi-party Pricing Mechanism Based on Blockchain and Game Theory

  • 摘要: 随着全球气候变化问题的日益突出,碳交易作为一种重要的环保手段逐渐受到广泛关注。在碳交易中,多方定价机制被广泛应用。本文探讨了基于区块链和博弈论的碳交易多方定价机制设计。通过使用区块链技术记录碳交易的信息和智能合约实现自动化执行和多方协作,该机制可以增加碳交易的透明度和可信度。基于博弈论的多方定价机制能够找到最优的定价策略,以实现碳交易的公平和合理。同时,还采用机器学习和数据分析技术,根据历史交易数据对碳交易单价及市场未来趋势进行预测,为交易者带来更精确的参考建议。此外,本文还设计并实现了一个基于区块链和博弈论的碳交易系统,并且对该系统的可行性进行了验证,证明了最优的定价策略在该系统中是可行的。

     

    Abstract: With the increasing prominence of global climate change issues, carbon trading has gained widespread attention as an important environmental protection measure. In carbon trading, multi-party pricing mechanisms are widely applied. This paper explores the design of a multi-party pricing mechanism for carbon trading based on blockchain and game theory. By utilizing blockchain technology to record information about carbon trading and employing smart contracts for automated execution and multi-party collaboration, this mechanism enhances the transparency and trustworthiness of carbon trading. The multi-party pricing mechanism based on game theory can identify the optimal pricing strategy to achieve fairness and equity in carbon trading. Additionally, machine learning and data analysis techniques are employed to predict the unit price of carbon trading and future market trends based on historical transaction data, providing traders with more accurate reference recommendations. Furthermore, this paper designs and implements a blockchain and game theory-based carbon trading system, and validates the feasibility of the system, demonstrating the viability of optimal pricing strategies within this framework.

     

/

返回文章
返回