宋思瑜, 林正文, 赵薇, 黄文广, 刘广臣. 基于Stacking集成学习的风机主轴止推轴承故障预警研究[J]. 电力大数据, 2023, 26(6): 68-79. DOI: 10.19317/j.cnki.1008-083x.2023.06.008
引用本文: 宋思瑜, 林正文, 赵薇, 黄文广, 刘广臣. 基于Stacking集成学习的风机主轴止推轴承故障预警研究[J]. 电力大数据, 2023, 26(6): 68-79. DOI: 10.19317/j.cnki.1008-083x.2023.06.008
SONG Si-yu, LIN Zheng-wen, ZHAO Wei, HUANG Wen-guang, LIU Guang-chen. Research on Fault Early Warning of Wind Turbine Main Shaft Thrust Bearing Based on Stacking Ensemble Learning[J]. Power Systems and Big Data, 2023, 26(6): 68-79. DOI: 10.19317/j.cnki.1008-083x.2023.06.008
Citation: SONG Si-yu, LIN Zheng-wen, ZHAO Wei, HUANG Wen-guang, LIU Guang-chen. Research on Fault Early Warning of Wind Turbine Main Shaft Thrust Bearing Based on Stacking Ensemble Learning[J]. Power Systems and Big Data, 2023, 26(6): 68-79. DOI: 10.19317/j.cnki.1008-083x.2023.06.008

基于Stacking集成学习的风机主轴止推轴承故障预警研究

Research on Fault Early Warning of Wind Turbine Main Shaft Thrust Bearing Based on Stacking Ensemble Learning

  • 摘要: 主轴止推轴承是风机的关键部件,一旦发生故障,将导致机组遭受严重损失。为实现风电机组主轴止推轴承早期故障预警,及早采取维护措施从而避免故障的进一步扩大,本文以风机主轴止推轴承温度为研究对象,提出一种基于风电机组正常运行状态下数据采集与监视控制(SCADA)的Stacking故障提前预警模型。首先,本文利用4个单一模型的拟合优度与均方误差比对特征进行综合排序,得到4组不同数量梯度特征组合的数据集。其次,通过对单一模型的预测性能以及相关性进行分析,最终确定以XGBoost、LightGBM以及随机森林作为基学习器,XGBoost作为元学习器建立Stacking集成学习预测模型。实验结果表明,基于Stacking模型对主轴止推轴承温度进行预测效果最好,预测误差相较于基学习器有明显提升。最后,计算模型温度预测的均方根误差(RMSE),并基于指数加权移动平均法(exponential weighted moving average, EWMA)设定主轴止推轴承正常状态下误差阈值。实验结果显示,本文建立的Stacking模型对风机主轴止推轴承故障至少可以提前6小时发出故障预警。

     

    Abstract: The main shaft thrust bearing is a critical component of wind turbines, and any failure can lead to significant losses for the unit. In order to achieve early fault warning for the main shaft thrust bearing of wind turbine units and take timely maintenance measures to avoid further expansion of the fault, this paper proposes a stacking fault early warning model based on data acquisition and supervisory control(SCADA) under normal operation of wind turbine units. Firstly, this paper uses the goodness of fit and mean square error of four single models to comprehensively rank the features and obtain datasets with four different combinations of gradient features. Secondly, through the analysis of the predictive performance and correlation of single models, XGBoost, LightGBM, and random forest are ultimately selected as the base learners, and XGBoost as the meta-learner to establish the Stacking ensemble learning prediction model. Experimental results show that the stacking model for predicting the temperature of the main shaft thrust bearing performs the best, with a significant improvement in prediction error compared to the base learners. Finally, the root mean square error(RMSE) of the model temperature prediction is calculated, and the error threshold for the normal state of the main shaft thrust bearing is set based on the exponential weighted moving average(EWMA) method. Experimental results demonstrate that the stacking model established in this paper can issue a fault warning for the main shaft thrust bearing of the wind turbine at least 6 hours in advance.

     

/

返回文章
返回