韩叶林, 张展耀, 俞伊丽, 李钟煦, 甘纯, 吴昊, 张引贤. 基于LSTM及分位数回归理论的配电变压器重过载概率预测[J]. 电力大数据, 2023, 26(6): 1-8. DOI: 10.19317/j.cnki.1008-083x.2023.06.001
引用本文: 韩叶林, 张展耀, 俞伊丽, 李钟煦, 甘纯, 吴昊, 张引贤. 基于LSTM及分位数回归理论的配电变压器重过载概率预测[J]. 电力大数据, 2023, 26(6): 1-8. DOI: 10.19317/j.cnki.1008-083x.2023.06.001
HAN Ye-lin, ZHANG Zhan-yao, YU Yi-li, LI Zhong-xu, GAN Chun, WU Hao, ZHANG Yin-xian. Probabilistic Prediction of Heavy or Overload Distribution Transformer Based on LSTM and Quantile Regression Theory[J]. Power Systems and Big Data, 2023, 26(6): 1-8. DOI: 10.19317/j.cnki.1008-083x.2023.06.001
Citation: HAN Ye-lin, ZHANG Zhan-yao, YU Yi-li, LI Zhong-xu, GAN Chun, WU Hao, ZHANG Yin-xian. Probabilistic Prediction of Heavy or Overload Distribution Transformer Based on LSTM and Quantile Regression Theory[J]. Power Systems and Big Data, 2023, 26(6): 1-8. DOI: 10.19317/j.cnki.1008-083x.2023.06.001

基于LSTM及分位数回归理论的配电变压器重过载概率预测

Probabilistic Prediction of Heavy or Overload Distribution Transformer Based on LSTM and Quantile Regression Theory

  • 摘要: 配电变压器的重过载是导致变压器故障的主要原因之一,因此,准确地预测配电变压器的运行情况对电力系统安全、可靠运行至关重要。由于配电台区负荷受到诸多复杂变量的影响,这些复杂变量的影响往往无法可靠建模估计,故最终预测结果表现出一定的不确定性。传统单点预测为预测单一最优值,无法充分量化预测的不确定性。本文融合多维特征与变压器历史运行数据,采用分位数回归方法对台区负荷情况进行建模。本文将条件分位数与一般线性或非线性模型结合来构建概率预测模型。传统的点预测由于其无法估计预测结果的不确定性,因此对业务部门的决策具有一定的风险。相比之下,概率预测不仅可以提供未来最优预测点,同时提供未来预测值的分布情况。概率预测能以预测区间或分位数的形式更好地估计重过载情况,为电网安全稳定运行提供决策依据。

     

    Abstract: The heavy-load or overload of distribution transformers is one of the primary causes leading to transformer failures. Therefore, accurately predicting the operational status of distribution transformers is crucial for the safe and reliable operation of power systems. Due to the influence of numerous complex variables on the load of distribution substations, it is often challenging to reliably model and estimate the effects of these complex variables, resulting in a certain level of uncertainty in the final prediction results. Traditional single-point predictions aim to forecast a single optimal value, failing to adequately quantify the uncertainty of the predictions. This paper combines multi-dimensional features with historical operational data of transformers and employs quantile regression methods to model the load situation of substations. Conditional quantiles are integrated with general linear or nonlinear models to construct a probabilistic prediction model. Traditional point predictions, due to their inability to estimate the uncertainty of the prediction results, entail a certain level of risk for business decision-making. In contrast, probabilistic predictions not only provide the optimal forecast point in the future but also offer information about the distribution of future forecast values. Probabilistic predictions can better estimate the occurrence of overloading in the form of prediction intervals or quantiles, providing a basis for decision-making in ensuring the safe and stable operation of the power grid.

     

/

返回文章
返回