刘颂, 刘振阳, 郝毅, 黄志刚, 何发才, 王梓. 基于多级离散小波变换和LSTM模型的充电负荷短期预测方法[J]. 电力大数据, 2022, 25(11): 1-8. DOI: 10.19317/j.cnki.1008-083x.2022.11.009
引用本文: 刘颂, 刘振阳, 郝毅, 黄志刚, 何发才, 王梓. 基于多级离散小波变换和LSTM模型的充电负荷短期预测方法[J]. 电力大数据, 2022, 25(11): 1-8. DOI: 10.19317/j.cnki.1008-083x.2022.11.009
LIU Song, LIU Zhen-yang, HAO Yi, HUANG Zhi-gang, HE Fa-cai, WANG Zi. Short-Term Prediction Method of Charging Load Based on Multi-Level Discrete Wavelet Transform and LSTM Network[J]. Power Systems and Big Data, 2022, 25(11): 1-8. DOI: 10.19317/j.cnki.1008-083x.2022.11.009
Citation: LIU Song, LIU Zhen-yang, HAO Yi, HUANG Zhi-gang, HE Fa-cai, WANG Zi. Short-Term Prediction Method of Charging Load Based on Multi-Level Discrete Wavelet Transform and LSTM Network[J]. Power Systems and Big Data, 2022, 25(11): 1-8. DOI: 10.19317/j.cnki.1008-083x.2022.11.009

基于多级离散小波变换和LSTM模型的充电负荷短期预测方法

Short-Term Prediction Method of Charging Load Based on Multi-Level Discrete Wavelet Transform and LSTM Network

  • 摘要: 电动汽车作为一种清洁环保的出行方式受到了越来越多地欢迎,但电动汽车充电负荷日益增长将会对现有电网造成一定的冲击与影响。与常规负荷不同,电动汽车的充电负荷存在较大的随机性,准确地预测电动汽车充电负荷的变化,有助于电网稳定运行。首先,本文针对各站电动汽车充电负荷曲线采用K-means算法进行聚类,减小充电负荷的波动性,同时,充电负荷时间序列是典型的非线性、非平稳时间序列,因此本文引入多级小波变化将充电负荷时间序列分解为多个复杂度较低的分量,帮助预测模型,挖掘其变化特征;然后,本文提出以历史充电负荷功率各级分量、天气数据、日期类型为输入的长短期记忆神经网络预测模型,并使用遗传算法来选择长短期记忆神经网络的最优超参数;最后,本文用实际数据验证了本文所提方法能够有效预测电动汽车的短期负荷。

     

    Abstract: As a clean and environment-friendly way of travel, electric vehicles are more and more popular, but the increasing charging load of electric vehicles will have a certain impact and impact on the existing power grid. Different from the conventional load, the charging load of electric vehicle has great randomness. In order to accurately predict the change of charging load of electric vehicle, firstly, K-means algorithm is used to cluster the charging load curve of electric vehicle at each station to reduce the fluctuation of charging load. At the same time, the charging load time series is a typical nonlinear and non-stationary time series. Therefore, multi-level wavelet change is introduced to decompose the charging load time series into multiple components with low complexity to help the prediction model mine its change characteristics. Then a long-term and short-term memory neural network prediction model is proposed, which takes all levels of components of historical charging load power, weather data and date type as inputs, and genetic algorithm is used to select the optimal super parameters of long-term and short-term memory neural network. Finally, the actual data verify that the proposed method can effectively predict the short-term load of electric vehicles.

     

/

返回文章
返回