张萌, 贺绍鹏, 朱文立, 戎袁杰, 宋志伟. 数据驱动的电工装备市场规模预测架构研究[J]. 电力大数据, 2022, 25(11): 56-62. DOI: 10.19317/j.cnki.1008-083x.2022.11.002
引用本文: 张萌, 贺绍鹏, 朱文立, 戎袁杰, 宋志伟. 数据驱动的电工装备市场规模预测架构研究[J]. 电力大数据, 2022, 25(11): 56-62. DOI: 10.19317/j.cnki.1008-083x.2022.11.002
ZHANG Meng, HE Shao-peng, ZHU Wen-li, RONG Yuan-jie, SONG Zhi-wei. Research on Data-Driven Prediction Framework of Electrical Equipment Market Scale[J]. Power Systems and Big Data, 2022, 25(11): 56-62. DOI: 10.19317/j.cnki.1008-083x.2022.11.002
Citation: ZHANG Meng, HE Shao-peng, ZHU Wen-li, RONG Yuan-jie, SONG Zhi-wei. Research on Data-Driven Prediction Framework of Electrical Equipment Market Scale[J]. Power Systems and Big Data, 2022, 25(11): 56-62. DOI: 10.19317/j.cnki.1008-083x.2022.11.002

数据驱动的电工装备市场规模预测架构研究

Research on Data-Driven Prediction Framework of Electrical Equipment Market Scale

  • 摘要: 随着电网建设投资规模的不断扩大,电工装备市场规模与电网物资采购需求的相关性持续加强。大数据时代下,采用基于大数据驱动的预测方法将电网采购计划预测与电工装备市场规模预测融会贯通,促进供需双方信息的互联互通及高效应用,能够有效推动电工装备市场由需求市场向供需动态平衡市场发展,加速行业供应链向供方延伸,缩减供方生产周期及生产成本,提升供方精益化生产水平。同时,有助于促进电网企业物资管理水平向精益化、智能化方向转变,通过精准预测物资需求规模,消除采购计划与实际需求之间的偏差,降低由于物资采购规模偏差引起的工程进度延缓或库存积压等风险。通过对可用模型的分析与选取,构建基于供应链大数据的生态赋能互动平台,以数据资源安全、合规利用为前提,整合电网物资供应链全域数据资源,打造数据资产管理体系,对内提升采购管理水平,对外交互赋能上下游企业转型升级,提升电工装备产业链供应链现代化水平,服务电工装备全国统一大市场建设。

     

    Abstract: With the continuous expansion of the power grid construction investment scale, the correlation between the electrical equipment market scale and the power grid material procurement demand continues to strengthen. In the era of big data, the data-driven prediction method is utilized to integrate the power grid procurement plan prediction and the electrical equipment market scale prediction, so as to promote the interconnection and efficient application of information between the supply and demand.It can effectively promote the development of the electrical equipment market from the demand market to the dynamic balance of supply and demand market, accelerate the extension of the industry supply chain to suppliers, reduce the production cycle and production cost of suppliers, and improve the lean production level of suppliers.In the meantime, it helps to promote the lean and intelligent level of material management for the power grid enterprises, eliminate the deviation between the procurement plan and the actual demand by accurately predicting the material demand scale, and reduce the risks of project progress delay or inventory backlog caused by the deviation of material procurement scale. Through the analysis and selection of available models, an ecological enabling interactive platform based on big data in the supply chain will be built. On the premise of data resource security and compliance utilization, the global data resources of material procurement will be integrated and a data-asset management system will be built, aiming to improve the procurement management level internally and enable the transformation and upgrading of upstream and downstream enterprises in the supply chain externally, so as to improve the modernization level of the supply chain of the electrical equipment industry chain and serve the construction of the national unified market for electrical equipment.

     

/

返回文章
返回