白亮, 郭新营, 潘旭东, 叶德力·波拉提, 古再奴尔·艾再孜. 基于大数据的信息系统资源利用率人工智能预测方法[J]. 电力大数据, 2022, 25(6): 43-48. DOI: 10.19317/j.cnki.1008-083x.2022.06.009
引用本文: 白亮, 郭新营, 潘旭东, 叶德力·波拉提, 古再奴尔·艾再孜. 基于大数据的信息系统资源利用率人工智能预测方法[J]. 电力大数据, 2022, 25(6): 43-48. DOI: 10.19317/j.cnki.1008-083x.2022.06.009
BAI Liang, GUO Xin-ying, PAN Xu-dong, BOLATI Ye-de-li, AIZAIZI Gu-zai-nu-er. Artificial Intelligence Prediction Method of Information System Resource Utilization Based on Big Data[J]. Power Systems and Big Data, 2022, 25(6): 43-48. DOI: 10.19317/j.cnki.1008-083x.2022.06.009
Citation: BAI Liang, GUO Xin-ying, PAN Xu-dong, BOLATI Ye-de-li, AIZAIZI Gu-zai-nu-er. Artificial Intelligence Prediction Method of Information System Resource Utilization Based on Big Data[J]. Power Systems and Big Data, 2022, 25(6): 43-48. DOI: 10.19317/j.cnki.1008-083x.2022.06.009

基于大数据的信息系统资源利用率人工智能预测方法

Artificial Intelligence Prediction Method of Information System Resource Utilization Based on Big Data

  • 摘要: 数据丢失会影响资源利用率预测结果的全面性,为了提升资源利用率的预测准确率,提升预测效率,降低数据的丢失率,提出基于大数据的信息系统资源利用率人工智能预测方法。构建大数据平台,通过该平台对信息系统资源数据进行采集,得到资源数据集;运用区块链技术对采集得到的资源数据进行存储,通过区块链的形式存储数据能够避免数据丢失;通过决策树分类处理信息系统资源数据,根据分类结果对不同类型的资源数据利用率进行预测,有利于提升预测效率。实验结果表明:所提方法的预测结果准确率最高值达到了97%,数据丢失率始终低于2%,且预测效率更高,由此验证了该方法的预测效果。

     

    Abstract: Data loss will affect the comprehensiveness of resource utilization prediction results.In order to improve the prediction accuracy of resource utilization, improve prediction efficiency, and reduce data loss rate, an artificial intelligence prediction method for information system resource utilization based on big data is proposed.We can build a big data platform, through which the resource data of the information system is collected to obtain a resource data set.The blockchain technology can be used to store the collected resource data to avoid data loss.The decision tree technology is used to classify and process information system resource data.The utilization of different types of resource data can be predict according to the classification results, which is beneficial to improve the prediction efficiency.The experimental results show that the highest accuracy of the prediction results of the proposed method reaches 97%,the data loss rate is always lower than 2%,and the prediction efficiency is higher, which verifies the prediction effect of the method.

     

/

返回文章
返回